# TRADE POTENTIALS IN GRAVITY PANEL DATA MODELS 

Luca De Benedictis<br>DIEF - Dipartimento di Istituzioni Economiche e Finanziarie<br>Via Crescimbeni, 20, 62100 Macerata;<br>E-mail: debene@unimc.it<br>and<br>Claudio Vicarelli<br>ISAE - Piazza dell'Indipendenza, No. 4, 00185 Rome;<br>E-mail: c.vicarelli@isae.it<br>Tel. +39 0644482370

Working paper No. 44
May 2004

The Series "Documenti di Lavoro" of the Istituto di Studi e Analisi Economica Institute for Studies and Economic Analyses (ISAE) hosts the preliminary results of the research projects carried out within ISAE. The diffusion of the papers is subject to the favourable opinion of an anonymous referee, whom we would like to thank. The opinions expressed are merely the Authors' own and in no way involve the ISAE responsability.
The Series is meant for experts and policy-makers with the aim of submitting proposals and raising suggestions and criticism.

La serie "Documenti di Lavoro" dell'Istituto di Studi e Analisi Economica ospita i risultati preliminari di ricerche predisposte all'interno dell'ISAE. La diffusione delle ricerche è autorizzata previo il parere favorevole di un anonimo esperto della materia che qui si ringrazia. Le opinioni espresse nei "Documenti di Lavoro" riflettono esclusivamente il pensiero degli autori e non impegnano la responsabilità dell'Ente. La serie è destinata agli esperti ed agli operatori di politica economica, al fine di formulare proposte e suscitare suggerimenti o critiche.


#### Abstract

In the last decade, a lot of effort has been produced in empirical international trade to explain bilateral volume of trade through the estimation of a gravity equation. A substantial share of this effort by scholars and Institutions regarded the estimate of trade potentials and the inference of trade effects of economic integration. In this paper we show - for the former euro-zone countries trade flows - how the result of a gravity model in terms of potential trade changes introducing time invariant country-specific effects and dynamics. In that case, our estimates give a more accurate account of the spread between actual and potential trade. Moreover, confronting the in-sample trade potential index derived from different estimators we give evidence of the convergence of the index towards the demarcation value corresponding to the equality between observed and predicted trade flows. Finally, we show how the sign of the index is not robust to a change of estimator, casting doubts on the soundness of strong policy implications based on the (in)existence of unrealized trade potentials.


JEL Classification Code: C13, C14, F10, F43
Keywords: International bilateral trade, Gravity model, Trade potentials, Dynamic Panel Data.

The authors wish to thank Maurice J. G. Bun, Damon Cann and David Rodman for exchanging ideas and Stata scripts; Giovanna Foschi for her efficient editorial assistance. The opinions expressed are merely the authors' own and in no way involve the ISAE responsibility.

## SUMMARY

In the last decade, a lot of effort has been produced in empirical international trade to explain bilateral volume of trade through the estimation of a gravity equation. Because of its appeal as an empirical strategy, its application has became enormously popular. Among the many studies using the gravity framework, a high percentage shares the research or institutional task of predicting trade potentials. Those studies look for evidence of a trade enhancing effect of countries' integration, their aim being the prediction of the additional bilateral trade that might be expected if integration between two countries (or more than two countries) is fostered. The objective of these analyses has often not being limited to the quantification of the potential trade effect of integration and has frequently entered the domain of policy prescriptions. The advice of deeper integration or the inference of adjustment costs associated with further integration frequently relied on the measurements of trade potentials obtained from various specifications of the gravity model.
Along the years two main strategies have been selected in order to calculate trade potentials. The first one derives out-of-sample trade potential estimates, i.e. referring to the EU-CEECs literature, the parameters for EU (or OECD) countries are estimated by a gravity model and then the same coefficients are applied to project "natural" trade relations between EU countries and CEECs. The difference between the observed and predicted trade flows should represent the unexhausted trade potential. The second strategy derives in-sample trade potential estimates, i.e. CEECs are included in the regression analysis and the residuals of the estimated equation should represent the difference between potential and actual trade relations. In this work we are interested in this second type of calculation.
In spite of the strategy in use authors tend to associate strong conclusions from the sign of the difference between potential and effective trade flows. Our suggestion is to take these advises with a grain of salt, especially if the sign in the difference between effective and potential trade is not robust to the use of different estimators of the gravity model.
In order to verify the robustness of the sign of the difference between effective and potential trade we climb the staircase of panel data specifications of the gravity model, starting from a static linear equation, and moving subsequently to a static linear equation with fixed effects, and finally to a dynamic linear system with fixed effects.
We estimated an export equation for each of former 11 Eurozone countries to 32 importer countries (the 11 euro countries plus 21 other countries). We estimated the same functional form for all the 11 European countries in our sample, using subsequently all three different estimator.

There are two main pieces of evidence resulting from the analysis. First, when we estimate a gravity equation through a dynamic estimator instead of a static one, generally we obtain that the fitted value are more close to historical values. It follows that a potential trade index derived from a dynamic specification gives more accurate indications on the spread between actual and potential trade. Since the difference between the two could be interpreted as a sign of misspecification, one should be more confident in interpreting the difference between observed and in-sample predicted trade flows not as pure indication of the loose specification of the econometric model.
Secondly, the choice of the estimator (static or dynamic) is very important if we want to draw some policy guidelines from a gravity equation. The same "standard" gravity equation can give very different results in terms of potential trade index if we estimate it through a static estimator instead of a dynamic one. In the large majority of the cases examined the potential trade changed sign according to the estimator used. In that cases, it would be improvident to draw any policy implication in terms of trade policy if the evidence of untapped trade potential or successful partnership is not robust to the use of different estimators.

## IL COMMERCIO POTENZIALE NEI MODELLI GRAVITAZIONALI PANEL DATA

## SINTESI

Nello scorso decennio, nella letteratura empirica si è ampiamente ricorso alla stima di equazioni gravitazionali per spiegare il volume di scambi bilaterali, in particolare per la valutazione del commercio potenziale e l'inferenza degli effetti commerciali del processo di integrazione economica.
In questo lavoro intendiamo mostrare come, relativamente ai flussi commerciali degli 11 paesi che hanno dato vita alla zona euro, i risultati di un modello gravitazionale, in termini di commercio potenziale, cambiano una volta introdotti elementi in grado di dar luogo ad una migliore specificazione, come le caratteristiche-paese e la dinamica.
In questo caso le nostre stime conducono a un più accurata descrizione della differenza tra commercio potenziale ed effettivo. Inoltre, confrontando l'indicatore di commercio potenziale calcolato sulla base di differenti metodologie di stima, si evidenzia una convergenza del valore di tale indicatore verso la soglia di demarcazione che corrisponde all'eguaglianza tra flussi di commercio osservati e stimati. Si mostra, infine, come il segno dell'indicatore non sia robusto al cambiamento dello stimatore; tutto ciò fa sorgere perplessità sulla solidità delle implicazioni di policy basate sulla esistenza di commercio potenziale non realizzato.

Classificazione JEL: C13, C14, F10, F43
Parole chiave: commercio bilaterale internazionale, modelli gravitazionali, commercio potenziale, modelli panel data dinamici.
CONTENTS

1. INTRODUCTION: GRAVITY AND TRADE POTENTIALS ..... Pag. 9
2. RESEARCH QUESTIONS AND POLITICAL ANSWERS ..... 66 ..... 10
3. THREE PANEL GRAVITY ESTIMATORS FOR EUROPEAN COUNTRIES' EXPORTS ..... 11
3.1 The model, the dataset and the trade potential index ..... 12
3.2 Fixed effects ..... 13
3.3 Dynamics, persistence and fixed effects ..... 14
4. RESULTS ..... 17
CONCLUSIONS ..... 19
APPENDIX: FIGURES AND TABLES ..... 20
REFERENCES ..... 50

## 1. INTRODUCTION: GRAVITY AND TRADE POTENTIALS

In the last decade, a lot of effort has been produced in empirical international trade to explain bilateral volume of trade through the estimation of a gravity equation (Disdier and Head, 2003). As a reminiscence of Isaac Newton's law of gravity, the trade version of the latter represents a reduced form which comprise supply and demand factors (GDP or GNP and population), as well as trade resistance (geographical distance, as a proxy of transport costs and home bias) and trade preference factors (preferential trade agreements, common language, common borders).

Because of its appeal as an empirical strategy its application has became enormously popular. Quoting Eichengreen and Irwin (1997), the gravity model is nowadays "... the workhorse for empirical studies ..." in international trade. Since the early 1990s, the large availability of international data necessary to fill the standard specification of the model, the relative independence from (or ability to mirror) different theoretical models, and a bandwagoning effect made the gravity model the empirical model of trade flows (Evenett and Keller, 2002).

Among the many studies using the gravity framework, a high percentage shares the research or institutional task of predicting trade potentials. ${ }^{1}$ Those studies look for evidence of a trade enhancing effect of countries' integration, their aim being the prediction of the additional bilateral trade that might be expected if integration between two countries (or more than two countries) is fostered. A different use of the gravity equation has been put forward by the U.S. Trade Commission (Rivera, 2003) to quantify the trade effects of liberalization.

After the fall of the Iron Curtain, gravity equations applications have been largely used to evaluate the trade potential of preferential agreements between the EU and the Central and Eastern European countries (CEECs) (Wang and Winters, 1992; Hamilton and Winters, 1992; Baldwin, 1994; Gros and Gonciarz, 1996; Brenton and Di Mauro, 1999; Nilsson 2000). The objective of these analyses has often not being limited to the quantification of the potential trade effect of integration and has frequently entered the domain of policy

[^0]prescriptions. The advice of deeper integration or the inference of adjustment costs associated with further integration ${ }^{2}$ frequently relied on the measurements of trade potentials obtained from various specifications of the gravity model.

As far as the data structure is concerned, early empirical studies used crosssection data to estimate a gravity model, whereas in the most recent years, researchers use panel data. Both kind of analyses are mainly static and they refer to long run relationship.

In this paper our aim is to show how the results of a gravity model in terms of potential trade could vary to the introduction of elements aiming to reach a better specification. In particular, when we model our equation considering time invariant country-specific effects and dynamics, we obtain different indications about trade potentials with respect to that obtained from a static formulation of the gravity equation. We test our hypothesis estimating an export equation for 11 European countries in the euro-zone. Finally, we derive some conclusions about the exaggerated reports on trade potentials and the policy prescriptions associated to them.

## 2. RESEARCH QUESTIONS AND POLITICAL ANSWERS

Along the years two main strategies have been selected in order to calculate trade potentials. The first one derives out-of-sample trade potential estimates, i.e. referring to the EU-CEECs literature, the parameters for EU (or OECD) countries are estimated by a gravity model and then the same coefficients are applied to project "natural" trade relations between EU countries and CEECs. The difference between the observed and predicted trade flows should represent the unexhausted trade potential. The second strategy derives in-sample trade potential estimates, i.e. CEECs are included in the regression analysis and the residuals of the estimated equation should represent the difference between potential and actual trade relations.

In spite of the strategy in use authors tend to associate strong conclusions from the sign of the difference between potential and effective trade flows. Sentences like the one contained in International Trade Centre (2003): when "... two

[^1]countries trade currently much more than the gravity models predicts ... there is a very successful bilateral partnership ... . When the two countries trade much less than in theory ... there seems to be an untapped trade potential," can be considered a common feature of a large share of the literature.

The policy implications associated to the finding of a negative sign (untapped trade potential) in the difference between effective and potential trade go from the necessity of country specific export promotion and of broader bilateral integration, to the need to anticipate relevant distribution changes due the effect of the expansion in bilateral trade flows in the near future.

A positive sign (successful partnership) in the difference between effective and potential trade generates different policy advises, such as the one prevailing in the EU-CEECs literature: trade has reached its potential level and no social cost has to be expected from future EU-CEECs integration.

Our suggestion is to take these advises with a grain of salt, especially if the sign in the difference between effective and potential trade is not robust to the use of different estimators of the gravity model. Is the sign stable?

## 3. THREE PANEL GRAVITY ESTIMATORS FOR EUROPEAN COUNTRIES' EXPORTS

In the following section in order to verify the robustness of the sign of the difference between effective and potential trade we climb the staircase of panel data specifications of the gravity model, starting from a static linear equation, and moving subsequently to a static linear equation with fixed effects, and finally to a dynamic linear system with fixed effects.

We estimated the same functional form for all the 11 European countries in our sample, using subsequently all three different estimators. We therefore disregard any specification issue related to single country, our emphasis being not on single country best fitting but on robustness of a common panel functional form to the change of estimators.

The choice of the functional form is also of limited relevance. We selected the "standard" functional form used more frequently in the empirical trade literature for no particular reason but being the mode in the meta-distribution ranging from the Zen functional form of Disdier and Head (2003), to the Baroque functional form of Rose and van Wincoop (2001). As far as we are concerned, any other functional form would have be equally fine.

### 3.1 The model, the dataset and the trade potential index

Along the lines of the traditional gravity approach, we start estimating an equation of bilateral exports of goods and services in a static form. We consider 11 European exporter countries ${ }^{3}$ and 32 importer countries (the 11 euro countries plus 21 other countries ${ }^{4}$ ). The estimates refer to the period 1991-2000.

These flows cover, on average, $86 \%$ of total exports share in value terms in 2000. Export data are in dollar terms, current prices (source IMF Direction of Trade statistics), deflated by export deflators (source Economist Intelligence Unit). GDP data are in US dollar at 1996 prices (source Economist Intelligence Unit); distance measures are taken from John Haveman's database; ${ }^{5}$ trade agreement dummy is built on the base of WTO information.

The estimated equation is

$$
\begin{equation*}
\ln \left(E X P_{i t}\right)=\alpha+\beta_{1} \ln \left(G D P_{i t}\right)+\beta_{2} \ln \left(D I S T_{i}\right)+\beta_{3} A G R_{i t}+\beta_{4} B O R D_{i}+\varepsilon_{i t} \tag{1}
\end{equation*}
$$

where $i=1,2, \ldots 31$ are the destination countries; $t=1991, \ldots 2000$ is the time span; $G D P$ is gross domestic product and DIST is distance in KM between exporter and destination countries capital cities; $A G R$ is a trade agreement dummy that takes value 1 when a trade agreement between the exporter and the partner country occurs, 0 otherwise; BORD is border dummy that takes value 1 if the exporter and the partner country share a common border.

Following the gravity approach, export flows were expected to be positively influenced by: (1) the dimension and the demand potentiality of host market (proxied by GDP), (2) the presence of trade agreements, (3) the geographical closeness (proxied by the presence of a land or sea border). On the other hand, bilateral exports flows are expected to be negatively correlated with the geographical distance of host's market, a proxy of trade costs, Home bias and time and search costs (Disdier and Head, 2003).

[^2]We estimated this equation by a OLS estimator, with a White heteroskedasticity correction. The estimated coefficients are statistically significant and the signs are the expected ones.

From the estimated coefficient, we calculate an in-sample trade potential index:

$$
\operatorname{POTTRADE}_{\mathrm{i}}=\frac{E F F T R A D E}{F I T T R A D E}
$$

where $E F F T R A D E_{i}$ are the real export flows from exporter country to partner country $i$, and $F I T T R A D E_{i}$ are the fitted export flows generated by the gravity equation.

Then, we standardized $P O T T R A D E_{i}$ so that the index would take values between [-1,1],

$$
S P T_{i}=\frac{\text { POTTRADE }-1}{\text { POTTRADE }+1}
$$

A positive index value $(0,1]$ shows a higher bilateral effective trade than what the model predicts; negative values $[-1,0)$ show the opposite.

Index values of bilateral potential trade calculated by the estimation of equation (1) are depicted for each one of the 11 European countries in figures 1-10 in the Appendix. We will describe the figures and comment on the resulting $S P T$ s of different specifications all together.

### 3.2 Fixed effects

Taking equation (1) as our starting point, the first element we add to it is time invariant country-specific effects.

There are good reasons to argue that country-specific fixed effects are relevant when export or import effects (like tariff and non-tariff barriers) or "environmental" determinants that could drive or hamper trade flows (geographical, political or historical determinants) are present. These factors are deterministically linked to the countries specific characteristics and cannot be considered as random. ${ }^{6}$ Besides, a fixed effect (within) estimator - including in

[^3]a constant term all the country-specific characteristics - avoids misspecification problems due to omitted variables. ${ }^{7}$

Indeed, considering bilateral fixed effects is the way to obtain a version of the gravity equation that can be viewed as a reduced form of a model of trade with solid microfoundations. In particular, we refer to Anderson and van Wincoop (2003), in which the authors develop a multilateral "trade resistance index". In this model, trade between a pair of countries depends on their bilateral trade barriers with all trade partners; trade will be stronger for those countries with a relatively low trade barrier. Following Rose and van Wincoop (2001), we approximated the multilateral "trade resistance index" using country-pair fixed effects.

Taking into account these considerations, we estimated our equation by a within estimator, i.e. a data panel with fixed effects which included specific regression constants for the observations on different host market. Consequently, all the time invariant terms (borders and distance) are now dropped and included in the bilateral constant terms.

The equation is now

$$
\begin{align*}
\ln \left(E X P_{i t}\right) & =\beta_{1} \ln \left(G D P_{i t}\right)+\beta_{3} A G R_{i t}+u_{i t} \\
u_{i t} & =v_{i}+\varepsilon_{i t} \tag{2}
\end{align*}
$$

where $v_{i}$ are unobserved bilateral country-level effects and $\varepsilon_{i t}$ is the error term.

The estimated coefficients are again statistically significant and the signs are the expected ones. Also in this case results are used to derive the $S P T$ depicted in figures 1-10 in the Appendix.

### 3.3 Dynamics, persistence and fixed effects

Short run can be generally very relevant in trade analyses, since countries that trade a lot with each other normally tend to keep on doing so. Such inertia mainly derives from the sunk costs borne by exporters when they set up distribution and service networks in the partner country, which give rise to substantial entrance and exit barriers (Eichengreen and Irwin 1997). This sticky

[^4]behaviour seems all the more important in the EMU case, where trade relationships between countries are affected not only by past investments in export-oriented infrastructure, but also by the accumulation of invisible assets such as political, cultural and geographical factors characterizing the area and influencing the commercial transactions taking place within it.

All these arguments boil down to the importance of a dynamic specification. The coefficient of the lagged endogenous variable catches the relevance of persistence in bilateral trade patterns.

Notwithstanding the empirical meaningfulness of this "persistence effect", it is worth noticing that quite few studies, based on a panel estimation of gravity equations, have considered the possibility to control for the statistical significance of the lagged bilateral trade (Egger, 2000b; De Grauwe and Skudelny, 2000; Bun and Klaassen 2002; De Nardis and Vicarelli, 2003).

The introduction of dynamics in a panel data model raises serious econometric problems due to the inconsistency of the estimators (Baltagi, 2001). ${ }^{8}$ Anderson and Hsiao (1981) proposed a two steps strategy based on differencing and instrumenting, lately refined by Arellano and Bond (1991). ${ }^{9}$

[^5]As far as the gravity model, the proposed strategy is however not costless. On the one hand, first-differencing the equation removes fixed effects but also time invariant regressors that are in the specification. If those regressors are of interest, the loss of information implied can be of no second order. On the other hand, first-differenced GMM estimator performs poorly in terms of precision if it is applied to short panels (along the $T$ dimension) including highly persistent time series (Blundell and Bond, 1998). Lagged levels of time series that have near unit root properties are in fact weak instruments for subsequent firstdifferences. Since bilateral exports between (old and new) industrialized countries are expected to change sluggishly, one might suspect that this would affect our estimates.

Arellano and Bover (1995) describe how, if the original equations in levels were added to the system of first-differenced equations, additional moment conditions could be brought to bear to increase efficiency. They show how the two key properties of the first differencing transformation - eliminating the timeinvariant individual effects while not introducing disturbances for periods earlier than period $t-1$ into the transformed error term - can be obtained using any alternative transformation (i.e. forward orthogonal deviations).

Blundell and Bond (1998) articulated the necessary assumptions for this "system GMM" estimator more precisely and tested it with Monte Carlo simulations. Bond (2002) is good introduction to these estimators and their use.

We already stressed the importance of country pair fixed effects. Also in a dynamic framework we want to consider it explicitly: after removing the country-pair specific effect from the error term, thus eliminating the source of correlation between the latter and lagged dependent variable, we reintroduce it considering a constant term between each country pair of our sample. Using a "system GMM" estimator first-difference equations and level equations are considered. Thus, our set of bilateral time-invariant dummies remains in the level regression describing all the time independent influences that affect trade between any two countries, like cultural, social and political factors that could not be included in the "persistence" effect picked up by the coefficient of the lagged dependent variable.

We adopted a dummy for each destination country, i.e. a different dummy for each specific pair (the exporter country and the destination market), that assumes a value of 1 in all years, 0 otherwise.

The estimated equation takes the form:

$$
\begin{gather*}
\ln \left(E X P_{i t}\right)=\beta_{1} \ln \left(G D P_{i t}\right)+\beta_{2} \ln \left(\text { DIST }_{i}\right)+\beta_{3} A G R_{i t}+\beta_{4} B O R D_{i}+ \\
+\beta_{5} \ln \left(E X P_{i t-n}\right)+\beta_{6} \text { COUNTRYPAIR }+u_{i t}  \tag{3}\\
u_{i t}=v_{i}+\varepsilon_{i t}
\end{gather*}
$$

where $D I S T_{i}, B O R D_{i}$, and COUNTRYPAIR are strictly exogenous covariates, $E X P_{i t-n}$ is endogenous, and $G D P_{i t}$ and $A G R_{i t}$ are predetermined.

## 4. RESULTS

Equations (1), (2) and (3) were estimated using in a sequel OLS, the Within estimator and "system GMM" discussed previously. Results are as expected: all the covariates are statistically significant, signs are correct, and the fit of the regressions is as usually high. Since our focus is not on parameters estimate but on the resulting $S P T$, we do not fully discuss the results (contained in the Appendix) but we concentrate on how the $S P T$ varies with the change in estimator used.

Moving from (1) to (2), and from (2) to (3) the fit of the regression improves. This can be seen through the change in SPT: since the $S P T$ index is built on the residuals of the regression, its absolute value is smaller the higher is the missfit of the regression and the standard error of the regression.

In figures 1-10 we plot the SPT index computed on the base of each version of gravity equation considered ( $s$ means "static" and refers to equation (1); $s$-fix means "static with fixed effects" and refers to equation (2); and $d$-fix means "dynamic with fixed effects" and refers to equation (3)). For each year in the time span the ratio between bilateral effective trade and potential trade is calculated. The $S P T$ index is therefore the simple 1992-2000 average of those yearly values.

Each different figure depicts the SPT index of each one of the EU countries with respect to its 31 partners. Partner countries are ordered alphabetically from left to right, and in each panel the value of the SPT index obtained through the three panel gravity estimators is shown. Bullets (o) stand for positive values, crosses $(+)$ for negative ones.

Figures 1-10 show $S P T$ changes with respect to the choice of estimator. Indeed, starting from (1) and moving to (3), index values show a clear path of "convegence" toward the demarcation value: a downward "convergence" if the starting value of the index (the value of $S P T$ generated by (1)) is positive, an upward "convergence" if the value of $S P T$ is negative. ${ }^{10}$

Furthermore, the dynamic specification of the model lowers the dispersion of potential trade index around its mean: the standard deviation of SPT index calculated for everyone of the 11 European countries with respect to its 31 host markets - decreases moving from (1) to (3) for each exporter country considered, converging towards the demarcation value.

143 cases ( $46 \%$ ) of negative SPT resulted from the OLS regression, indicating relevant untapped trade potentials. With the use of the within estimator negative $S P T$ s drop to 74 cases $(24 \%)$. With the system GMM estimator only 5 cases remain. Even if we consider that the system GMM estimator has the chance of being downward biased and that the $S P T$ is an average value, the path towards the demarcation value is so evident to call against the many exaggerated reports on trade potentials.

On the other hand, the sign of $S P T$ is not robust to the change in estimator. More than a half of the cases reported in figures 1-10 (176/310) does change sign moving from one estimator to the other. More precisely, we observe that $46 \%$ of the cases changed signs moving from $s$ to $d-f i x, 38 \%$ changed signs moving from $s$ to $s$-fix, whilst $23 \%$ changed signs moving from $s$-fix to $d$-fix. The change in sign is therefore remarkably high, and this is the case not only moving from OLS to the within estimator, but also moving from the within estimator to the system GMM estimator.

If trade is a dynamic process, the use of a dynamic specification such as (3) instead of (2) is of no minor importance. Since $S P T$ is remarkably sensible to the choice of the estimator, the indications of untapped trade potential or of successful partnership should at least take into account the role played by dynamics, and the invariance in the sign of $S P T$ has to be checked.

[^6]
## CONCLUSIONS

In this paper we show how the result of a gravity model in terms of a potential trade index changes introducing in a "standard" specification fixed effects and dynamics.

There are two main pieces of evidence resulting from the analysis. First, when we estimate a gravity equation through a dynamic estimator instead of a static one, generally we obtain better results in terms of standard error of regression: the fitted value are more close to historical values. The dynamic specification of the model lowers the dispersion around SPT: the standard deviation of the index decreases moving from (1) to (3), converging towards the demarcation value.

It follows that an $S P T$ index derived from a dynamic specification gives more accurate indications on the spread between actual and potential trade. Since the difference between the two could be interpreted as a sign of misspecification (Egger, 2000a), one should be more confident in interpreting the difference between observed and in-sample predicted trade flows not as pure indication of the loose specification of the econometric model.

Secondly, the choice of the estimator (static or dynamic) is very important if we want to draw some policy guidelines from a gravity equation. The same "standard" gravity equation can give very different results in terms of $S P T$ index if we estimate it through a static estimator instead of a dynamic one.

In the large majority of the cases examined the $S P T$ changed sign according to the estimator used. In that cases, it would be improvident to draw any policy implication in terms of trade policy if the evidence of untapped trade potential or successful partnership is not robust to the use of different estimators.

## APPENDIX: FIGURES AND TABLES

Figure 1: Visual summary of standardized effective/potential trade


Figure 2: Visual summary of standardized effective/potential trade


Figure 3: Visual summary of standardized effective/potential trade


Figure 4: Visual summary of standardized effective/potential trade


Figure 5: Visual summary of standardized effective/potential trade


Figure 6: Visual summary of standardized effective/potential trade


Figure 7: Visual summary of standardized effective/potential trade


Figure 8: Visual summary of standardized effective/potential trade


Figure 9: Visual summary of standardized effective/potential trade


Figure 10: Visual summary of standardized effective/potential trade


## AUSTRIA

## Model 1. OLS estimate results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Con | Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LnGDP | 0.535131 | 0.042249 | 12.67 | 0 | 0.451987 | 0.618274 |
| InDIST | -0.46739 | 0.060054 | -7.78 | 0 | -0.58558 | -0.34921 |
| AGR | 0.540733 | 0.113708 | 4.76 | 0 | 0.316963 | 0.764503 |
| BORD | 0.877275 | 0.169245 | 5.18 | 0 | 0.544213 | 1.210337 |
| _const | 2.040572 | 0.45855 | 4.45 | 0 | 1.138179 | 2.942966 |
| Number of obs $=304$ |  |  |  |  |  |  |
| $F(4,299)=129.78$ |  |  |  |  |  |  |
| Prob $>$ F $\quad=0.0000$ |  |  |  |  |  |  |
| R-squared $=0.6296$ |  |  |  |  |  |  |
| Adj R-squared $=0.6345$ |  |  |  |  |  |  |
| Root MSE $=0.81032$ |  |  |  |  |  |  |

## Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | $t$ | $P>\|t\|$ | $95 \%$ Conf. Interval |  |
| :--- | ---: | ---: | :--- | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| InGDP | 1.793777 | 0.32419 | 5.53 | 0 | 1.155525 | 2.432029 |
| AGR | 0.31623 | 0.092648 | 3.41 | 0.001 | 0.133829 | 0.498631 |
| InDIST | (dropped) |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |
| _const | -8.66748 | 1.881186 | -4.61 | 0 | -12.3711 | -4.96388 |

Fixed effects not reported
R-sq: within $=0.2235$
between $=0.2075$
overall $=0.1938$

Model 3. System GMM dynamic panel-data estimates results, one-step

|  | Coef. | Robust Std. Err. | t | $P>\|t\|$ | 95\% C | f. Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lnexp |  |  |  |  |  |  |
|  | 0.180129 | 0.150232 | 1.2 | 0.24 | -0.12669 | 0.486943 |
| InGDP | 1.880504 | 0.6262 | 3 | 0.005 | 0.601634 | 3.159375 |
| InDIST | -0.92745 | 0.301006 | -3.08 | 0.004 | -1.54218 | -0.31271 |
| BORD | -5.8632 | 2.58973 | -2.26 | 0.031 | -11.1521 | -0.57427 |
| AGR | 0.212719 | 0.069502 | 3.06 | 0.005 | 0.070777 | 0.354661 |
| Auarg | -2.05771 | 0.7999 | -2.57 | 0.015 | -3.69133 | -0.4241 |
| Aufra | -4.81821 | 2.308971 | -2.09 | 0.046 | -9.53376 | -0.10266 |
| auaus | -1.49362 | 0.937135 | -1.59 | 0.121 | -3.4075 | 0.420269 |
| Aube | -2.39533 | 1.329674 | -1.8 | 0.082 | -5.11089 | 0.320222 |
| Aubra | -3.29165 | 1.44208 | -2.28 | 0.03 | -6.23677 | -0.34653 |
| aucan | -2.78957 | 1.387966 | -2.01 | 0.054 | -5.62418 | 0.045032 |
| auchi | -3.07397 | 1.489877 | -2.06 | 0.048 | -6.1167 | -0.03124 |
| aucz | 5.683831 | 1.943709 | 2.92 | 0.007 | 1.714248 | 9.653414 |
| auden | -2.30963 | 1.151391 | -2.01 | 0.054 | -4.66108 | 0.041825 |
| aufin | -1.48218 | 0.844167 | -1.76 | 0.089 | -3.2062 | 0.241841 |
| auger | 1.668701 | 0.328174 | 5.08 | 0 | 0.99848 | 2.338922 |
| augre | -1.66692 | 0.863838 | -1.93 | 0.063 | -3.43111 | 0.097277 |
| auhk | -0.0196 | 0.57423 | -0.03 | 0.973 | -1.19233 | 1.153134 |
| auire | -1.02334 | 0.559135 | -1.83 | 0.077 | -2.16525 | 0.118563 |
| auita | 1.759475 | 0.441529 | 3.98 | 0 | 0.857753 | 2.661198 |
| aujap | -5.66081 | 2.45546 | -2.31 | 0.028 | -10.6755 | -0.64609 |
| auko | -2.50021 | 1.213537 | -2.06 | 0.048 | -4.97858 | -0.02184 |
| aumex | -2.24077 | 1.004098 | -2.23 | 0.033 | -4.29141 | -0.19012 |
| auneth | -2.8205 | 1.560367 | -1.81 | 0.081 | -6.0072 | 0.366192 |
| aunor | -1.98403 | 0.964437 | -2.06 | 0.048 | -3.95367 | -0.01439 |
| aupol | -1.71971 | 1.095218 | -1.57 | 0.127 | -3.95645 | 0.517021 |
| aupor | -0.99595 | 0.672486 | -1.48 | 0.149 | -2.36935 | 0.377452 |
| auru | -2.88996 | 1.508134 | -1.92 | 0.065 | -5.96998 | 0.190063 |
| auspa | -3.05622 | 1.628331 | -1.88 | 0.07 | -6.38172 | 0.269274 |
| auswe | -2.29148 | 1.250553 | -1.83 | 0.077 | -4.84545 | 0.262495 |
| auswi | 4.023879 | 1.244423 | 3.23 | 0.003 | 1.482428 | 6.56533 |
| autur | -1.74693 | 1.027404 | -1.7 | 0.099 | -3.84517 | 0.351311 |
| auuk | 1.928352 | 0.537579 | 3.59 | 0.001 | 0.830468 | 3.026235 |
| auusa | -6.06416 | 2.794541 | -2.17 | 0.038 | -11.7714 | -0.35695 |

Arellano-Bond test for AR(1) in first differences: $\mathrm{z}=0.06 \mathrm{Pr}>\mathrm{z}=0.950$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=-1.31 \operatorname{Pr}>\mathrm{z}=0.192$

## BELGIUM

Model 1. OLS estimate results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Con | . Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 0.801774 | 0.031346 | 25.58 | 0 | 0.740089 | 0.863459 |
| InDIST | -0.49661 | 0.055562 | -8.94 | 0 | -0.60595 | -0.38726 |
| AGR | 0.650757 | 0.116911 | 5.57 | 0 | 0.420689 | 0.880826 |
| BORD | 0.601373 | 0.166472 | 3.61 | 0 | 0.273771 | 0.928974 |
| _const | 1.397898 | 0.471519 | 2.96 | 0.003 | 0.469994 | 2.325802 |
| Number of obs $=305$ |  |  |  |  |  |  |
| $F(4,300)=397.01$ |  |  |  |  |  |  |
| Prob > F $\quad=0.0000$ |  |  |  |  |  |  |
| R-squared $\quad=0.8411$ |  |  |  |  |  |  |
| Adj R-squared $=0.8390$ |  |  |  |  |  |  |
| Root MSE $\quad 0.58101$ |  |  |  |  |  |  |

Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ |  | $95 \%$ Conf. Interval |  |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | :---: |
|  |  |  |  |  |  |  |  |
| InGDP | 2.209921 | 0.130931 | 16.88 | 0 | 1.952154 | 2.467687 |  |
| AGR | 0.302795 | 0.075708 | 4 | 0 | 0.153747 | 0.451844 |  |
| InDIST | (dropped) |  |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |  |
| _const | -10.3211 | 0.757507 | -13.63 | 0 | -11.8124 | -8.82973 |  |

Fixed effects not reported
R-sq: within $=0.5568$
between $=0.4086$
overall $=0.4008$

Model 3. System GMM dynamic panel-data estimates results, one-step

|  | Coef. | Robust st.error | t | $P>\|t\|$ | 95\% C | Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{lnEXP}$ |  |  |  |  |  |  |
|  | 0.613614 | 0.086834 | 7.07 | 0 | 0.436276 | 0.790951 |
| InGDP | 1.106787 | 0.256802 | 4.31 | 0 | 0.582328 | 1.631247 |
| InDIST | -0.49026 | 0.113471 | -4.32 | 0 | -0.722 | -0.25852 |
| BORD | -2.11691 | 0.58156 | -3.64 | 0.001 | -3.30461 | -0.9292 |
| AGR | 0.096495 | 0.044924 | 2.15 | 0.04 | 0.004749 | 0.188242 |
| bearg | -1.2112 | 0.334532 | -3.62 | 0.001 | -1.8944 | -0.52799 |
| befra | -1.14635 | 0.270956 | -4.23 | 0 | -1.69972 | -0.59298 |
| beaus | -1.11916 | 0.321677 | -3.48 | 0.002 | -1.77612 | -0.46221 |
| beau | -1.5859 | 0.406251 | -3.9 | 0 | -2.41557 | -0.75622 |
| bebra | -2.10469 | 0.559132 | -3.76 | 0.001 | -3.24659 | -0.96279 |
| becan | -2.14569 | 0.548741 | -3.91 | 0 | -3.26637 | -1.02501 |
| bechi | -2.08881 | 0.548492 | -3.81 | 0.001 | -3.20898 | -0.96864 |
| becz | -0.50644 | 0.145905 | -3.47 | 0.002 | -0.80442 | -0.20846 |
| beden | -1.50086 | 0.37097 | -4.05 | 0 | -2.25848 | -0.74324 |
| befin | -0.91342 | 0.245737 | -3.72 | 0.001 | -1.41528 | -0.41156 |
| beger | -1.73541 | 0.402477 | -4.31 | 0 | -2.55737 | -0.91344 |
| begre | -0.75518 | 0.199721 | -3.78 | 0.001 | -1.16307 | -0.3473 |
| behk | -0.01634 | 0.111445 | -0.15 | 0.884 | -0.24394 | 0.211262 |
| beire | -0.71649 | 0.198807 | -3.6 | 0.001 | -1.12251 | -0.31047 |
| beita | -2.7157 | 0.687286 | -3.95 | 0 | -4.11932 | -1.31207 |
| bejap | -3.6599 | 0.915785 | -4 | 0 | -5.53018 | -1.78962 |
| beko | -1.76857 | 0.454683 | -3.89 | 0.001 | -2.69715 | -0.83998 |
| bemex | -1.47535 | 0.385211 | -3.83 | 0.001 | -2.26205 | -0.68864 |
| benor | -1.47416 | 0.339746 | -4.34 | 0 | -2.16802 | -0.78031 |
| bepol | -1.14637 | 0.294881 | -3.89 | 0.001 | -1.74859 | -0.54414 |
| bepor | -0.61284 | 0.182792 | -3.35 | 0.002 | -0.98616 | -0.23953 |
| beru | -1.94726 | 0.513811 | -3.79 | 0.001 | -2.9966 | -0.89791 |
| bespa | -2.08134 | 0.54128 | -3.85 | 0.001 | -3.18678 | -0.9759 |
| beswe | -1.43057 | 0.387483 | -3.69 | 0.001 | -2.22191 | -0.63922 |
| beswi | -2.04273 | 0.502075 | -4.07 | 0 | -3.06811 | -1.01736 |
| betur | -0.90466 | 0.290834 | -3.11 | 0.004 | -1.49862 | -0.31069 |
| behun | -2.47417 | 0.654121 | -3.78 | 0.001 | -3.81006 | -1.13827 |
| beuk | -0.69805 | 0.196534 | -3.55 | 0.001 | -1.09943 | -0.29668 |
| beusa | -3.88669 | 1.006201 | -3.86 | 0.001 | -5.94163 | -1.83175 |

Arellano-Bond test for $\operatorname{AR}(1)$ in first differences: $\mathrm{z}=-2.80 \mathrm{Pr}>\mathrm{z}=0.005$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=-1.35 \operatorname{Pr}>\mathrm{z}=0.176$

## FINLAND

## Model 1. OLS estimate results

|  | Coef. | Std. Err. | $t$ | $P>\|t\|$ |  | $95 \%$ Conf. Interval |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| InGDP | 0.807593 | 0.030869 | 26.16 | 0 | 0.746847 | 0.868339 |
| InDIST | -0.72451 | 0.05586 | -12.97 | 0 | -0.83443 | -0.61458 |
| AGR | 0.350121 | 0.089682 | 3.9 | 0 | 0.173637 | 0.526606 |
| BORD | 0.595523 | 0.150885 | 3.95 | 0 | 0.298596 | 0.892449 |
| _const | 2.53822 | 0.458887 | 5.53 | 0 | 1.635176 | 3.441264 |

Number of obs $=305$
$F(4,300)=230.75$
Prob $>$ F $=0.0000$
R-squared $=0.7547$
Adj R-squared $=0.7514$
Root MSE $\quad=0.64277$

## Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | $95 \%$ Conf. Interval |  |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| InGDP | 2.603139 | 0.179894 | 14.47 | 0.000 | 2.248977 | 2.957301 |
| AGR | 0.106956 | 0.050742 | 2.11 | 0.036 | 0.00706 | 0.206853 |
| InDIST | (dropped) |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |
| _const | -13.5666 | 1.046139 | -12.97 | 0.000 | -15.6262 | -11.5071 |

Fixed effects not reported
R-sq: within $=0.5325$
between $=0.3743$
overall $=0.3579$

## Model 3. System GMM dynamic panel-data estimates results, one-step

Coef. $\begin{gathered}\text { Robust } \\ \text { Std. Err. }\end{gathered} \quad \mathrm{P}>|\mathrm{t}| \quad$ 95\% Conf. Interval

| InEXP | 0.683006 | 0.038333 | 17.82 | 0 | 0.604719 | 0.761293 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| InGDP | 1.063235 | 0.191535 | 5.55 | 0 | 0.672067 | 1.454402 |
| InDIST | -0.5247 | 0.089491 | -5.86 | 0 | -0.70746 | -0.34193 |
| BORD | -1.80833 | 0.56272 | -3.21 | 0.003 | -2.95756 | -0.6591 |
| AGR | -0.03804 | 0.031394 | -1.21 | 0.235 | -0.10215 | 0.026076 |
| finarg | -0.88348 | 0.245782 | -3.59 | 0.001 | -1.38543 | -0.38152 |
| finfra | -2.81913 | 0.722231 | -3.9 | 0 | -4.29412 | -1.34413 |
| finaus | -0.79175 | 0.312795 | -2.53 | 0.017 | -1.43057 | -0.15294 |
| finbe | -1.2877 | 0.409403 | -3.15 | 0.004 | -2.12382 | -0.45159 |
| finbra | -1.85944 | 0.450744 | -4.13 | 0 | -2.77998 | -0.93889 |
| fincan | -1.84392 | 0.460945 | -4 | 0 | -2.78529 | -0.90254 |
| fincin | -1.72965 | 0.50535 | -3.42 | 0.002 | -2.76171 | -0.69759 |
| fincz | -0.04979 | 0.139684 | -0.36 | 0.724 | -0.33506 | 0.235486 |
| finden | -1.10395 | 0.389385 | -2.84 | 0.008 | -1.89918 | -0.30872 |
| finau | -1.39644 | 0.389212 | -3.59 | 0.001 | -2.19131 | -0.60156 |
| finger | -3.08782 | 0.81944 | -3.77 | 0.001 | -4.76134 | -1.4143 |
| fingre | -0.58957 | 0.232688 | -2.53 | 0.017 | -1.06479 | -0.11436 |
| finhk | -0.00048 | 0.198662 | 0 | 0.998 | -0.40621 | 0.40524 |
| finire | -0.23973 | 0.158549 | -1.51 | 0.141 | -0.56353 | 0.084071 |
| finita | -2.58643 | 0.664312 | -3.89 | 0.001 | -3.94314 | -1.22973 |
| finjap | -3.54226 | 0.816295 | -4.34 | 0 | -5.20935 | -1.87516 |
| finko | -1.4214 | 0.408722 | -3.48 | 0.002 | -2.25612 | -0.58667 |
| finmex | -1.31908 | 0.313375 | -4.21 | 0 | -1.95908 | -0.67909 |
| finneth | -1.57282 | 0.496803 | -3.17 | 0.004 | -2.58743 | -0.55821 |
| finnor | 0.828993 | 0.198555 | 4.18 | 0 | 0.423489 | 1.234496 |
| finpol | -0.97155 | 0.338808 | -2.87 | 0.007 | -1.66349 | -0.27961 |
| finpor | -0.39995 | 0.190358 | -2.1 | 0.044 | -0.78871 | -0.01119 |
| finspa | -1.82122 | 0.512331 | -3.55 | 0.001 | -2.86754 | -0.7749 |
| finswe | 0.277473 | 0.049803 | 5.57 | 0 | 0.175762 | 0.379184 |
| finswi | -1.48613 | 0.415757 | -3.57 | 0.001 | -2.33522 | -0.63704 |
| fintur | -0.95746 | 0.313298 | -3.06 | 0.005 | -1.5973 | -0.31762 |
| finhun | -2.44053 | 0.692992 | -3.52 | 0.001 | -3.85581 | -1.02525 |
| finuk | 0.266379 | 0.097217 | 2.74 | 0.01 | 0.067835 | 0.464924 |
| finusa | -3.73602 | 0.925799 | -4.04 | 0 | -5.62675 | -1.84529 |
|  |  |  |  |  |  |  |

Arellano-Bond test for $\operatorname{AR}(1)$ in first differences: $\mathrm{z}=-2.70 \mathrm{Pr}>\mathrm{z}=0.007$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=0.04 \mathrm{Pr}>\mathrm{z}=0.971$

## FRANCE

Model 1. OLS estimate results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Conf. Interval |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 0.664099 | 0.04894 | 13.57 | 0 | 0.567789 | 0.760408 |
| InDIST | -0.5021 | 0.072004 | -6.97 | 0 | -0.6438 | -0.3604 |
| AGR | 0.080864 | 0.175409 | 0.46 | 0.645 | -0.26433 | 0.426056 |
| BORD | 1.660283 | 0.174664 | 9.51 | 0 | 1.316557 | 2.00401 |
| _const | 3.324345 | 0.645741 | 5.15 | 0 | 2.053572 | 4.595118 |
| Number | obs = | 304 |  |  |  |  |
| F ( 4, 299) | ) | 172.27 |  |  |  |  |
| Prob > F | = | 0.0000 |  |  |  |  |
| R -square | = | 0.6974 |  |  |  |  |
| Adj R-sq | ared = | 0.6933 |  |  |  |  |
| Root MS | $=$ | 0.87969 |  |  |  |  |

Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Conf. Interval |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 2.259785 | 0.11068 | 20.42 | 0 | 2.041884 | 2.477687 |
| AGR | 0.316977 | 0.064092 | 4.95 | 0 | 0.190795 | 0.443159 |
| InDIST | (dropped) |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |
| _const | -9.55893 | 0.633448 | -15.09 | 0 | -10.806 | -8.31183 |

Fixed effects not reported
R-sq: within $=0.6494$
between $=0.2492$
overall $=0.2787$

Model 3. System GMM dynamic panel-data estimates results, one-step

Coef. | Robust |
| :---: |
| Std. Err. |$\quad \mathrm{t} \quad \mathrm{P}>|\mathrm{t}| \quad 95 \%$ Conf. Interval

| InEXP | 0.618697 | 0.074647 | 8.29 | 0 | 0.466247 | 0.771148 |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| InGDP | 1.125026 | 0.202867 | 5.55 | 0 | 0.710717 | 1.539336 |
| BORD | -0.25555 | 0.516193 | -0.5 | 0.624 | -1.30976 | 0.798653 |
| InDIST | -0.42256 | 0.086981 | -4.86 | 0 | -0.60019 | -0.24492 |
| AGR | 0.010456 | 0.088124 | 0.12 | 0.906 | -0.16952 | 0.190428 |
| fraarg | -1.31753 | 0.23982 | -5.49 | 0 | -1.8073 | -0.82775 |
| fraau | -2.00057 | 0.399404 | -5.01 | 0 | -2.81626 | -1.18488 |
| fraaus | -1.64195 | 0.278987 | -5.89 | 0 | -2.21172 | -1.07218 |
| frabra | -2.45678 | 0.445247 | -5.52 | 0 | -3.3661 | -1.54747 |
| fracan | -2.34076 | 0.425837 | -5.5 | 0 | -3.21044 | -1.47109 |
| frachi | -2.38065 | 0.444917 | -5.35 | 0 | -3.2893 | -1.47201 |
| fracz | -0.77348 | 0.185292 | -4.17 | 0 | -1.1519 | -0.39506 |
| fraden | -1.87045 | 0.368442 | -5.08 | 0 | -2.62293 | -1.11797 |
| frafin | -1.36401 | 0.254423 | -5.36 | 0 | -1.88361 | -0.84441 |
| frager | -3.58993 | 0.607058 | -5.91 | 0 | -4.8297 | -2.35015 |
| fragre | -0.97604 | 0.208245 | -4.69 | 0 | -1.40133 | -0.55074 |
| frahk | -0.44928 | 0.154861 | -2.9 | 0.007 | -0.76555 | -0.13302 |
| fraire | -0.78474 | 0.178781 | -4.39 | 0 | -1.14986 | -0.41962 |
| fraita | -2.63715 | 0.454929 | -5.8 | 0 | -3.56623 | -1.70806 |
| frajap | -4.09013 | 0.749951 | -5.45 | 0 | -5.62173 | -2.55852 |
| frako | -1.96628 | 0.357841 | -5.49 | 0 | -2.69709 | -1.23547 |
| framex | -1.72839 | 0.297074 | -5.82 | 0 | -2.3351 | -1.12169 |
| franeth | -2.5768 | 0.564124 | -4.57 | 0 | -3.7289 | -1.42471 |
| franor | -1.72882 | 0.321998 | -5.37 | 0 | -2.38642 | -1.07121 |
| frapol | -1.46183 | 0.302163 | -4.84 | 0 | -2.07893 | -0.84473 |
| frapor | -0.64758 | 0.181665 | -3.56 | 0.001 | -1.01859 | -0.27657 |
| Fraru | -2.43399 | 0.445191 | -5.47 | 0 | -3.3432 | -1.52479 |
| fraspa | -1.77765 | 0.351643 | -5.06 | 0 | -2.49581 | -1.0595 |
| fraswe | -1.82831 | 0.377092 | -4.85 | 0 | -2.59843 | -1.05818 |
| fraswi | -1.77219 | 0.369733 | -4.79 | 0 | -2.52728 | -1.01709 |
| fratur | -1.2284 | 0.267894 | -4.59 | 0 | -1.77551 | -0.68128 |
| frahun | -2.86488 | 0.627643 | -4.56 | 0 | -4.14669 | -1.58306 |
| frauk | -0.76677 | 0.167263 | -4.58 | 0 | -1.10837 | -0.42518 |
| frausa | -4.28493 | 0.841366 | -5.09 | 0 | -6.00323 | -2.56663 |

Arellano-Bond test for AR(1) in first differences: $\mathrm{z}=-2.99 \operatorname{Pr}>\mathrm{z}=0.003$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=0.57 \mathrm{Pr}>\mathrm{z}=0.567$

## GERMANY

Model 1. OLS estimate results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Con | . Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 0.684421 | 0.02066 | 33.13 | 0 | 0.643764 | 0.725079 |
| InDIST | -0.5628 | 0.040097 | -14.04 | 0 | -0.64171 | -0.4839 |
| AGR | 0.151806 | 0.082132 | 1.85 | 0.066 | -0.00982 | 0.313436 |
| BORD | 0.279583 | 0.07497 | 3.73 | 0 | 0.132047 | 0.427118 |
| _const | 4.624259 | 0.355518 | 13.01 | 0 | 3.924624 | 5.323894 |
| Number of obs $=304$ |  |  |  |  |  |  |
| F( 4, 299) |  | 441.65 |  |  |  |  |
| Prob $>$ F |  | 0.0000 |  |  |  |  |
| R -squared |  | 0.8552 |  |  |  |  |
| Adj R-squared |  | 0.8533 |  |  |  |  |

Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ |  | $95 \%$ Conf. Interval |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| InGDP | 1.89339 | 0.096066 | 19.71 | 0 | 1.704259 | 2.082521 |
| AGR | 0.236558 | 0.055719 | 4.25 | 0 | 0.12686 | 0.346256 |
| InDIST | (dropped) |  |  |  |  |  |
| BORD | (dropped) |  |  | 0 | -7.65379 | -5.49409 |

Fixed effects not reported
R-sq: within $=0.6284$
between $=0.3229$
overall $=0.3295$

Model 3. System GMM dynamic panel-data estimates results, one-step
Coef. $\begin{gathered}\text { Robust } \\ \text { Std. Err. }\end{gathered} \quad$ t $\quad P>|t| \quad 95 \%$ Conf. Interval

| InEXP | 0.621586 | 0.07855 | 7.91 | 0 | 0.461165 | 0.782007 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| InGDP | 0.928743 | 0.236243 | 3.93 | 0 | 0.446271 | 1.411215 |
| BORD | -0.18934 | 0.179768 | -1.05 | 0.301 | -0.55647 | 0.177794 |
| InDIST | -0.28608 | 0.090843 | -3.15 | 0.004 | -0.4716 | -0.10055 |
| AGR | 0.092523 | 0.034383 | 2.69 | 0.012 | 0.022304 | 0.162741 |
| gerarg | -1.47055 | 0.358953 | -4.1 | 0 | -2.20363 | -0.73747 |
| gerau | -0.86753 | 0.257411 | -3.37 | 0.002 | -1.39324 | -0.34183 |
| geraus | -1.40888 | 0.36963 | -3.81 | 0.001 | -2.16377 | -0.65399 |
| gerbe | -1.40237 | 0.398513 | -3.52 | 0.001 | -2.21624 | -0.5885 |
| gerbra | -2.03448 | 0.55936 | -3.64 | 0.001 | -3.17684 | -0.89211 |
| gercan | -2.11998 | 0.563178 | -3.76 | 0.001 | -3.27015 | -0.96982 |
| gerchi | -1.91919 | 0.562655 | -3.41 | 0.002 | -3.06828 | -0.77009 |
| gerden | -1.13794 | 0.255931 | -4.45 | 0 | -1.66062 | -0.61526 |
| gerfin | -0.9511 | 0.288072 | -3.3 | 0.002 | -1.53942 | -0.36278 |
| gerfra | -2.57246 | 0.71741 | -3.59 | 0.001 | -4.03761 | -1.10731 |
| gergre | -0.98036 | 0.257752 | -3.8 | 0.001 | -1.50676 | -0.45396 |
| gerhk | -0.59565 | 0.182732 | -3.26 | 0.003 | -0.96884 | -0.22246 |
| gerire | -0.84947 | 0.225283 | -3.77 | 0.001 | -1.30956 | -0.38938 |
| gerita | -2.41415 | 0.746351 | -3.23 | 0.003 | -3.9384 | -0.8899 |
| gerjap | -3.36609 | 0.927792 | -3.63 | 0.001 | -5.26089 | -1.47128 |
| gerko | -1.68169 | 0.45929 | -3.66 | 0.001 | -2.61969 | -0.7437 |
| germex | -1.41742 | 0.38488 | -3.68 | 0.001 | -2.20345 | -0.63139 |
| gerneth | -1.67511 | 0.476043 | -3.52 | 0.001 | -2.64731 | -0.7029 |
| gernor | -1.32175 | 0.359345 | -3.68 | 0.001 | -2.05563 | -0.58787 |
| gerpol | -0.71078 | 0.164309 | -4.33 | 0 | -1.04635 | -0.37522 |
| gerpor | -0.79435 | 0.228504 | -3.48 | 0.002 | -1.26102 | -0.32768 |
| gerru | -1.78209 | 0.527113 | -3.38 | 0.002 | -2.8586 | -0.70558 |
| gerspa | -1.94478 | 0.591436 | -3.29 | 0.003 | -3.15265 | -0.73691 |
| gerswe | -1.36533 | 0.438429 | -3.11 | 0.004 | -2.26072 | -0.46993 |
| gerswi | -1.34306 | 0.36261 | -3.7 | 0.001 | -2.0836 | -0.60251 |
| gertur | -0.95386 | 0.325566 | -2.93 | 0.006 | -1.61875 | -0.28897 |
| gerhun | -2.36763 | 0.746909 | -3.17 | 0.003 | -3.89302 | -0.84224 |
| geruk | -0.2134 | 0.151759 | -1.41 | 0.17 | -0.52333 | 0.096536 |
| gerusa | -3.44856 | 1.031257 | -3.34 | 0.002 | -5.55466 | -1.34245 |

Arellano-Bond test for $\mathrm{AR}(1)$ in first differences: $\mathrm{z}=-4.00 \mathrm{Pr}>\mathrm{z}=0.000$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=-1.16 \operatorname{Pr}>\mathrm{z}=0.248$

## IRELAND

Model 1. OLS estimate results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Con | . Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 1.077247 | 0.043338 | 24.86 | 0 | 0.99196 | 1.162533 |
| InDIST | -0.62066 | 0.097768 | -6.35 | 0 | -0.81307 | -0.42826 |
| AGR | 0.91054 | 0.17911 | 5.08 | 0 | 0.558064 | 1.263016 |
| BORD | -1.07126 | 0.321293 | -3.33 | 0.001 | -1.70354 | -0.43897 |
| _const | -0.53186 | 0.9107 | -0.58 | 0.56 | -2.32405 | 1.260332 |
| Number of obs $=304$ |  |  |  |  |  |  |
| $F(4,299)=217.47$ |  |  |  |  |  |  |
| Prob $>$ F $\quad=0.0000$ |  |  |  |  |  |  |
| R-squared $=0.7442$ |  |  |  |  |  |  |
| Adj R-squared $=0.7408$ |  |  |  |  |  |  |
| Root MSE $\quad=0.87155$ |  |  |  |  |  |  |

Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | $95 \%$ Conf. Interval |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| InGDP | 4.61606 | 0.215457 | 21.42 | 0 | 4.191878 | 5.040242 |
| AGR | 0.403096 | 0.11592 | 3.48 | 0.001 | 0.174877 | 0.631315 |
| InDIST | (dropped) |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |
| _const | -25.98 | 1.25454 | -20.71 | 0 | -28.4499 | -23.5101 |

Fixed effects not reported
R-sq: within $=0.6608$
between $=0.4937$
overall $=0.4671$

Model 3. System GMM dynamic panel-data estimates results, one-step
Coef. Robust $t \quad P>|t|$

95\% Conf. Interval

| InEXP | 0.715454 | 0.081407 | 8.79 | 0 | 0.5492 | 0.881709 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| InGDP | 1.433075 | 0.551829 | 2.6 | 0.014 | 0.306089 | 2.560061 |
| InDIST | -0.69059 | 0.250004 | -2.76 | 0.01 | -1.20117 | -0.18001 |
| BORD | 0.14128 | 0.211489 | 0.67 | 0.509 | -0.29064 | 0.573197 |
| irearg | -1.72373 | 0.872578 | -1.98 | 0.057 | -3.50578 | 0.058307 |
| ireau | -2.38734 | 1.007535 | -2.37 | 0.024 | -4.445 | -0.32968 |
| ireaus | -1.41399 | 0.828382 | -1.71 | 0.098 | -3.10578 | 0.277788 |
| irlee | -2.63891 | 1.102886 | -2.39 | 0.023 | -4.89131 | -0.38652 |
| irebra | -3.1152 | 1.408312 | -2.21 | 0.035 | -5.99135 | -0.23904 |
| irecan | -2.94271 | 1.35466 | -2.17 | 0.038 | -5.70929 | -0.17612 |
| Irechi | -3.25856 | 1.510911 | -2.16 | 0.039 | -6.34426 | -0.17287 |
| Irlez | -0.51972 | 0.280659 | -1.85 | 0.074 | -1.09291 | 0.053457 |
| ireden | -2.13567 | 0.864995 | -2.47 | 0.019 | -3.90222 | -0.36911 |
| Irefin | -1.44802 | 0.643133 | -2.25 | 0.032 | -2.76147 | -0.13457 |
| Irefra | -4.93973 | 2.016896 | -2.45 | 0.02 | -9.05879 | -0.82068 |
| Iregre | -1.30031 | 0.516207 | -2.52 | 0.017 | -2.35455 | -0.24608 |
| Irehk | -0.40207 | 0.454349 | -0.88 | 0.383 | -1.32998 | 0.525834 |
| Ireita | -4.20865 | 1.722871 | -2.44 | 0.021 | -7.72722 | -0.69008 |
| Ireger | -5.2681 | 2.166697 | -2.43 | 0.021 | -9.69309 | -0.84312 |
| Irejap | -4.83654 | 2.195073 | -2.2 | 0.035 | -9.31947 | -0.3536 |
| Ireko | -2.10234 | 1.128517 | -1.86 | 0.072 | -4.40708 | 0.202402 |
| iremex | -1.86961 | 0.968025 | -1.93 | 0.063 | -3.84658 | 0.107362 |
| ireneth | -3.13955 | 1.317111 | -2.38 | 0.024 | -5.82945 | -0.44966 |
| Irenor | -1.89479 | 0.776925 | -2.44 | 0.021 | -3.48148 | -0.3081 |
| Irepol | -1.78014 | 0.732296 | -2.43 | 0.021 | -3.27568 | -0.28459 |
| Irepor | -1.54466 | 0.597373 | -2.59 | 0.015 | -2.76466 | -0.32466 |
| Ireru | -2.82775 | 1.305598 | -2.17 | 0.038 | -5.49413 | -0.16136 |
| irespa | -3.51108 | 1.439101 | -2.44 | 0.021 | -6.45011 | -0.57204 |
| Ireswe | -2.26203 | 1.007223 | -2.25 | 0.032 | -4.31905 | -0.20501 |
| Ireswi | -2.63418 | 1.105932 | -2.38 | 0.024 | -4.89279 | -0.37556 |
| irleur | -1.59061 | 0.863261 | -1.84 | 0.075 | -3.35362 | 0.172406 |
| irehun | -3.63544 | 1.567622 | -2.32 | 0.027 | -6.83695 | -0.43393 |
| ireuk | -1.28258 | 0.507422 | -2.53 | 0.017 | -2.31888 | -0.24629 |
| ireusa | -5.62573 | 2.541609 | -2.21 | 0.035 | -10.8164 | -0.43507 |
|  |  |  |  |  |  |  |

Arellano-Bond test for $\operatorname{AR}(1)$ in first differences: $\mathrm{z}=-2.00 \mathrm{Pr}>\mathrm{z}=0.046$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=-0.60 \mathrm{Pr}>\mathrm{z}=0.548$

## ITALY

## Model 1. OLS estimate results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Co | f. Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 0.715179 | 0.025569 | 27.97 | 0 | 0.664861 | 0.765497 |
| InDIST | -0.51308 | 0.055686 | -9.21 | 0 | -0.62266 | -0.40349 |
| AGR | 0.327793 | 0.100408 | 3.26 | 0.001 | 0.130198 | 0.525388 |
| BORD | 0.304183 | 0.110991 | 2.74 | 0.007 | 0.085761 | 0.522606 |
| Const | 3.189012 | 0.479085 | 6.66 | 0 | 2.246207 | 4.131816 |
| Number of obs $=304$ |  |  |  |  |  |  |
| $F(4,299)=260.10$ |  |  |  |  |  |  |
| Prob $>$ F $\quad=0.0000$ |  |  |  |  |  |  |
| R-squared $=0.7768$ |  |  |  |  |  |  |
| Adj R-squared $=0.7738$ |  |  |  |  |  |  |
| Root MSE $=0.50898$ |  |  |  |  |  |  |

## Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | $95 \%$ Conf. Interval |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| InGDP | 1.866038 | 0.123742 | 15.08 | 0 | 1.622421 | 2.109655 |
| AGR | 0.448518 | 0.07173 | 6.25 | 0 | 0.307298 | 0.589737 |
| InDIST | (dropped) |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |
| _const | -7.52905 | 0.709199 | -10.62 | 0 | -8.92529 | -6.13281 |

Fixed effects not reported
R-sq: within $=0.5391$
between $=0.4949$
overall $=0.4766$

Model 3. System GMM dynamic panel-data estimates results, one-step
Coef. $\begin{gathered}\text { Robust } \\ \text { Std. Err. }\end{gathered} \quad t \quad P>|t| \quad 95 \%$ Conf. Interval

|  |  |  |  | 0 | 0.587021 | 0.755326 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| InEXP | 0.671173 | 0.041205 | 16.29 | 0 | 0.148172 | 0.302303 |
| InGDP | 0.225238 | 0.037735 | 5.97 | 0.379 | -0.054 | 0.02115 |
| BORD | -0.01643 | 0.0184 | -0.89 | 0.35 |  |  |
| InDIST | 0.022357 | 0.011031 | 2.03 | 0.052 | -0.00017 | 0.044886 |
| AGR | 0.116916 | 0.040381 | 2.9 | 0.007 | 0.034447 | 0.199385 |
| itaarg | -0.52355 | 0.048904 | -10.71 | 0 | -0.62343 | -0.42367 |
| itaau | -0.07718 | 0.014536 | -5.31 | 0 | -0.10687 | -0.04749 |
| itaaus | -0.59115 | 0.053107 | -11.13 | 0 | -0.69961 | -0.48269 |
| itabe | -0.12298 | 0.012957 | -9.49 | 0 | -0.14944 | -0.09652 |
| itabra | -0.56261 | 0.058553 | -9.61 | 0 | -0.68219 | -0.44303 |
| itacan | -0.61411 | 0.058609 | -10.48 | 0 | -0.7338 | -0.49441 |
| Itachi | -0.59026 | 0.058292 | -10.13 | 0 | -0.70931 | -0.47122 |
| Itacz | -0.18112 | 0.016696 | -10.85 | 0 | -0.21521 | -0.14702 |
| itaden | -0.43307 | 0.034041 | -12.72 | 0 | -0.50259 | -0.36354 |
| Itafin | -0.53817 | 0.037141 | -14.49 | 0 | -0.61402 | -0.46232 |
| itagre | -0.05461 | 0.018931 | -2.88 | 0.007 | -0.09327 | -0.01595 |
| Itahk | -0.10139 | 0.056957 | -1.78 | 0.085 | -0.21771 | 0.014931 |
| Itaire | -0.41111 | 0.033986 | -12.1 | 0 | -0.48052 | -0.3417 |
| Itajap | -0.82373 | 0.088673 | -9.29 | 0 | -1.00483 | -0.64264 |
| Itako | -0.61231 | 0.054372 | -11.26 | 0 | -0.72335 | -0.50126 |
| itamex | -0.64476 | 0.060426 | -10.67 | 0 | -0.76817 | -0.52135 |
| itaneth | -0.213 | 0.016704 | -12.75 | 0 | -0.24711 | -0.17888 |
| itanor | -0.59946 | 0.049449 | -12.12 | 0 | -0.70044 | -0.49847 |
| itapol | -0.1689 | 0.018959 | -8.91 | 0 | -0.20762 | -0.13018 |
| itapor | -0.16105 | 0.019008 | -8.47 | 0 | -0.19987 | -0.12223 |
| Itaru | -0.37804 | 0.041359 | -9.14 | 0 | -0.46251 | -0.29357 |
| itaspa | -0.08019 | 0.013996 | -5.73 | 0 | -0.10877 | -0.05161 |
| itaswe | -0.4288 | 0.032444 | -13.22 | 0 | -0.49505 | -0.36254 |
| itaswi | -0.03458 | 0.011265 | -3.07 | 0.005 | -0.05759 | -0.01157 |
| Itatur | -0.08346 | 0.038056 | -2.19 | 0.036 | -0.16118 | -0.00574 |
| Itahun | -0.14542 | 0.026354 | -5.52 | 0 | -0.19924 | -0.0916 |
| Itauk | -0.11968 | 0.019472 | -6.15 | 0 | -0.15945 | -0.07991 |
| itausa | -0.41453 | 0.063271 | -6.55 | 0 | -0.54375 | -0.28532 |

Arellano-Bond test for AR(1) in first differences: $\mathrm{z}=-2.38 \mathrm{Pr}>\mathrm{z}=0.018$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=-1.52 \operatorname{Pr}>\mathrm{z}=0.128$

## NETHERLAND

Model 1. OLS estimate results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Con | . Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 0.761685 | 0.025921 | 29.39 | 0 | 0.710675 | 0.812695 |
| InDIST | -0.53649 | 0.047417 | -11.31 | 0 | -0.6298 | -0.44317 |
| AGR | 0.722094 | 0.103835 | 6.95 | 0 | 0.517754 | 0.926434 |
| BORD | 0.677613 | 0.157685 | 4.3 | 0 | 0.367301 | 0.987925 |
| Const | 2.121805 | 0.41449 | 5.12 | 0 | 1.306117 | 2.937493 |
| Number of obs $=304$ |  |  |  |  |  |  |
| $F(4,299)=440.51$ |  |  |  |  |  |  |
| Prob $>$ F $\quad=0.0000$ |  |  |  |  |  |  |
| R-squared $=0.8549$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $\text { Root MSE } \quad=0.52145$ |  |  |  |  |  |  |

## Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ |  | $95 \%$ Conf. Interval |  |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | :---: |
|  |  |  |  |  |  |  |  |
| InGDP | 2.155737 | 0.112038 | 19.24 | 0 | 1.935162 | 2.376312 |  |
| AGR | 0.437781 | 0.064451 | 6.79 | 0 | 0.310893 | 0.564669 |  |
| InDIST | (dropped) |  |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |  |
| _const | -9.8629 | 0.646127 | -15.26 | 0 | -11.135 | -8.59083 |  |

Fixed effects not reported
R-sq: within $=0.6434$
between $=0.3495$
overall $=0.3553$

Model 3. System GMM dynamic panel-data estimates results, one-step
Coef. $\begin{gathered}\text { Robust } \\ \text { Std. Err. }\end{gathered} \quad \mathrm{t} \quad \mathrm{P}>|t| \quad 95 \%$ Conf. Interval

| InEXP | 0.647451 | 0.098824 | 6.55 | 0 | 0.445625 | 0.849278 |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| InGDP | 0.988561 | 0.283985 | 3.48 | 0.002 | 0.408587 | 1.568536 |
| BORD | -3.33309 | 1.120062 | -2.98 | 0.006 | -5.62057 | -1.04562 |
| InDIST | -0.41926 | 0.126561 | -3.31 | 0.002 | -0.67773 | -0.16078 |
| AGR | 0.162359 | 0.051133 | 3.18 | 0.003 | 0.057931 | 0.266786 |
| netharg | -1.25413 | 0.353893 | -3.54 | 0.001 | -1.97688 | -0.53138 |
| nethau | -1.40866 | 0.482852 | -2.92 | 0.007 | -2.39477 | -0.42254 |
| nethaus | -1.1763 | 0.355814 | -3.31 | 0.002 | -1.90297 | -0.44963 |
| nethbe | 1.698957 | 0.526782 | 3.23 | 0.003 | 0.623125 | 2.774788 |
| nethbra | -1.98012 | 0.597301 | -3.32 | 0.002 | -3.19997 | -0.76027 |
| nethcan | -2.00516 | 0.604125 | -3.32 | 0.002 | -3.23895 | -0.77137 |
| nethcin | -2.01388 | 0.626043 | -3.22 | 0.003 | -3.29243 | -0.73533 |
| nethcz | -0.56619 | 0.199313 | -2.84 | 0.008 | -0.97324 | -0.15913 |
| nethden | -1.39292 | 0.461076 | -3.02 | 0.005 | -2.33456 | -0.45128 |
| Nethfin | -0.81683 | 0.302154 | -2.7 | 0.011 | -1.43391 | -0.19975 |
| Nethfra | -2.99304 | 0.986206 | -3.03 | 0.005 | -5.00714 | -0.97893 |
| nethgre | -0.70649 | 0.245927 | -2.87 | 0.007 | -1.20875 | -0.20424 |
| Nethhk | -0.24589 | 0.164972 | -1.49 | 0.147 | -0.58281 | 0.091024 |
| Nethire | -0.69344 | 0.244121 | -2.84 | 0.008 | -1.192 | -0.19488 |
| Nethjap | -3.41237 | 1.035071 | -3.3 | 0.003 | -5.52626 | -1.29847 |
| Nethko | -1.48123 | 0.471642 | -3.14 | 0.004 | -2.44446 | -0.51801 |
| nethmex | -1.44489 | 0.426727 | -3.39 | 0.002 | -2.31638 | -0.5734 |
| Nethita | -2.51467 | 0.819432 | -3.07 | 0.005 | -4.18817 | -0.84117 |
| nethnor | -1.32843 | 0.4011 | -3.31 | 0.002 | -2.14758 | -0.50927 |
| nethpol | -1.06714 | 0.358042 | -2.98 | 0.006 | -1.79836 | -0.33593 |
| nethpor | -0.67201 | 0.239813 | -2.8 | 0.009 | -1.16177 | -0.18224 |
| Nethru | -1.72077 | 0.563595 | -3.05 | 0.005 | -2.87179 | -0.56976 |
| nethspa | -1.98718 | 0.654523 | -3.04 | 0.005 | -3.32389 | -0.65047 |
| nethswe | -1.32597 | 0.476957 | -2.78 | 0.009 | -2.30005 | -0.3519 |
| Nethswi | -1.83851 | 0.587627 | -3.13 | 0.004 | -3.0386 | -0.63841 |
| Nethtur | -0.85209 | 0.330637 | -2.58 | 0.015 | -1.52734 | -0.17684 |
| Nethhun | -2.32161 | 0.796229 | -2.92 | 0.007 | -3.94773 | -0.69549 |
| Nethuk | -0.73883 | 0.246628 | -3 | 0.005 | -1.24251 | -0.23515 |
| nethusa | -3.62584 | 1.149829 | -3.15 | 0.004 | -5.9741 | -1.27758 |

Arellano-Bond test for $\operatorname{AR}(1)$ in first differences: $\mathrm{z}=-3.80 \mathrm{Pr}>\mathrm{z}=0.000$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=1.76 \mathrm{Pr}>\mathrm{z}=0.079$

## PORTUGAL

Model 1. OLS estimate results

|  | Coef. | Std. Err. | t | $P>\|t\|$ | 95\% Con | Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 1.009384 | 0.045736 | 22.07 | 0 | 0.919378 | 1.09939 |
| InDIST | -1.24254 | 0.114035 | -10.9 | 0 | -1.46695 | -1.01812 |
| AGR | 0.487614 | 0.161192 | 3.03 | 0.003 | 0.170396 | 0.804833 |
| BORD | -0.17741 | 0.362084 | -0.49 | 0.625 | -0.88998 | 0.535151 |
| Const | 4.501457 | 0.997941 | 4.51 | 0 | 2.537553 | 6.465362 |
| Number of obs $=303$ |  |  |  |  |  |  |
| $F(4,298)=190.33$ |  |  |  |  |  |  |
| Prob > F $\quad=0.0000$ |  |  |  |  |  |  |
| R-squared $=0.7187$ |  |  |  |  |  |  |
| Adj R-squared $=0.7149$ |  |  |  |  |  |  |
| Root MSE $=0.96767$ |  |  |  |  |  |  |

## Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | $t$ | $P>\|t\|$ | $95 \%$ Conf. Interval |  |
| :--- | ---: | :---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| InGDP | 2.486821 | 0.24787 | 10.03 | 0 | 1.998817 | 2.974826 |
| AGR | 0.162706 | 0.142769 | 1.14 | 0.255 | -0.11838 | 0.443788 |
| InDIST | (dropped) |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |
| _const | -14.1193 | 1.441301 | -9.8 | 0 | -16.9569 | -11.2817 |

Fixed effects not reported
R-sq: within $=0.2915$
between $=0.3635$
overall $=0.3487$

Model 3. System GMM dynamic panel-data estimates results, one-step
Coef. Robust $t \quad P>|t|$

95\% Conf. Interval

| LnEXP | 0.591657 | 0.133426 | 4.43 | 0 | 0.319166 | 0.864148 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| InGDP | 1.375392 | 0.424529 | 3.24 | 0.003 | 0.508387 | 2.242397 |
| InDIST | -0.67772 | 0.205296 | -3.3 | 0.002 | -1.09699 | -0.25845 |
| AGR | -0.26445 | 0.196636 | -1.34 | 0.189 | -0.66604 | 0.137133 |
| BORD | -2.84128 | 1.139099 | -2.49 | 0.018 | -5.16763 | -0.51493 |
| porarg | -1.78114 | 0.682697 | -2.61 | 0.014 | -3.17539 | -0.38688 |
| Porau | -1.70213 | 0.66607 | -2.56 | 0.016 | -3.06243 | -0.34183 |
| poraus | -1.61601 | 0.670635 | -2.41 | 0.022 | -2.98563 | -0.24639 |
| Porbe | -1.43539 | 0.697385 | -2.06 | 0.048 | -2.85964 | -0.01114 |
| porbra | -2.80994 | 1.051581 | -2.67 | 0.012 | -4.95755 | -0.66232 |
| porcan | -2.87114 | 1.022981 | -2.81 | 0.009 | -4.96035 | -0.78194 |
| Porchi | -3.61404 | 1.174723 | -3.08 | 0.004 | -6.01315 | -1.21494 |
| Porcz | -0.51001 | 0.203507 | -2.51 | 0.018 | -0.92563 | -0.09439 |
| porden | -1.02257 | 0.535215 | -1.91 | 0.066 | -2.11562 | 0.070488 |
| Porfin | -0.79111 | 0.430615 | -1.84 | 0.076 | -1.67054 | 0.088327 |
| Porfra | -3.46722 | 1.317207 | -2.63 | 0.013 | -6.15732 | -0.77713 |
| porgre | -0.93653 | 0.408012 | -2.3 | 0.029 | -1.7698 | -0.10326 |
| Porhk | -0.73335 | 0.414673 | -1.77 | 0.087 | -1.58023 | 0.113524 |
| Porire | -0.58217 | 0.321721 | -1.81 | 0.08 | -1.23922 | 0.074868 |
| porger | -3.74264 | 1.422167 | -2.63 | 0.013 | -6.64709 | -0.83819 |
| Porjap | -5.12405 | 1.699645 | -3.01 | 0.005 | -8.59519 | -1.65291 |
| Porko | -2.86654 | 0.922395 | -3.11 | 0.004 | -4.75032 | -0.98276 |
| pormex | -2.42833 | 0.836322 | -2.9 | 0.007 | -4.13633 | -0.72033 |
| porneth | -1.90827 | 0.82575 | -2.31 | 0.028 | -3.59468 | -0.22187 |
| Pornor | -1.19465 | 0.584287 | -2.04 | 0.05 | -2.38792 | -0.00138 |
| Porpol | -1.55131 | 0.537848 | -2.88 | 0.007 | -2.64974 | -0.45288 |
| Porru | -3.11432 | 1.009589 | -3.08 | 0.004 | -5.17618 | -1.05247 |
| Porita | -3.50189 | 1.245341 | -2.81 | 0.009 | -6.04522 | -0.95857 |
| porswe | -1.42885 | 0.655185 | -2.18 | 0.037 | -2.76691 | -0.09078 |
| porswi | -2.31494 | 0.890013 | -2.6 | 0.014 | -4.13259 | -0.49729 |
| Portur | -1.64675 | 0.652185 | -2.52 | 0.017 | -2.97869 | -0.31481 |
| Porhun | -2.792 | 1.132349 | -2.47 | 0.02 | -5.10457 | -0.47944 |
| Poruk | -0.18929 | 0.181342 | -1.04 | 0.305 | -0.55964 | 0.181057 |
| porusa | -5.423 | 1.912812 | -2.84 | 0.008 | -9.32949 | -1.51652 |
|  |  |  |  |  |  |  |

Arellano-Bond test for $\operatorname{AR}(1)$ in first differences: $\mathrm{z}=-2.12 \operatorname{Pr}>\mathrm{z}=0.034$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $\mathrm{z}=1.09 \mathrm{Pr}>\mathrm{z}=0.277$

## SPAIN

## Model 1. OLS estimate results

|  | Coef. | Std. Err. | $t$ | $P>\|t\|$ | 95\% Conf. Interval |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| InGDP | 0.816305 | 0.032774 | 24.91 | 0 | 0.751811 | 0.8808 |
| InDIST | -0.51392 | 0.08716 | -5.9 | 0 | -0.68543 | -0.3424 |
| AGR | 0.581553 | 0.141423 | 4.11 | 0 | 0.30325 | 0.859855 |
| BORD | 1.387637 | 0.182043 | 7.62 | 0 | 1.0294 | 1.745874 |
| Const | 1.266975 | 0.767607 | 1.65 | 0.1 | -0.24358 | 2.77753 |
| Number | obs = | 306 |  |  |  |  |
| F( 4, 301) | 1) | 240.60 |  |  |  |  |
| Prob > F | = | 0.0000 |  |  |  |  |
| R-square | = | 0.7618 |  |  |  |  |
| Adj R-sq | ared = | 0.7586 |  |  |  |  |
| Root MS | $=$ | 0.68065 |  |  |  |  |

## Model 2. Fixed effects (within) regression estimates results

|  | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | $95 \%$ Conf. Interval |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| InGDP | 2.697903 | 0.186592 | 14.46 | 0 | 2.330561 | 3.065245 |
| AGR | 0.546693 | 0.10755 | 5.08 | 0 | 0.33496 | 0.758427 |
| InDIST | (dropped) |  |  |  |  |  |
| BORD | (dropped) |  |  |  |  |  |
| _const | -13.6683 | 1.073369 | -12.73 | 0 | -15.7814 | -11.5552 |

Fixed effects not reported
R-sq: within $=0.5025$
between $=0.4385$
overall $=0.4140$

Model 3. System GMM dynamic panel-data estimates results, one-step
Coef. $\begin{gathered}\text { Robust } \\ \text { Std. Err. }\end{gathered} \quad \mathrm{t} \quad \mathrm{P}>|\mathrm{t}| \quad 95 \%$ Conf. Interval

|  |  |  |  |  |  | 0.515525 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 0.779445 |  |  |  |  |  |
| LnEXP | 0.647485 | 0.064614 | 10.02 |  | 0 | 0.48 |
| LnGDP | 0.856286 | 0.345466 | 2.019 | 0.15075 | 1.561821 |  |
| BORD | -0.10826 | 0.477752 | -0.23 | 0.822 | -1.08396 | 0.867445 |
| LnDIST | -0.38677 | 0.155564 | -2.49 | 0.019 | -0.70448 | -0.06907 |
| AGR | 0.108268 | 0.038144 | 2.84 | 0.008 | 0.030367 | 0.186169 |
| spaarg | -0.31856 | 0.423523 | -0.75 | 0.458 | -1.18351 | 0.54639 |
| Spaau | -1.01365 | 0.618551 | -1.64 | 0.112 | -2.27689 | 0.249604 |
| spaaus | -0.85841 | 0.514429 | -1.67 | 0.106 | -1.90901 | 0.192197 |
| Spabe | -0.90285 | 0.664449 | -1.36 | 0.184 | -2.25984 | 0.454138 |
| spabra | -1.34056 | 0.819208 | -1.64 | 0.112 | -3.01361 | 0.332487 |
| spacan | -1.56964 | 0.813628 | -1.93 | 0.063 | -3.23129 | 0.092008 |
| spacin | -1.5024 | 0.811535 | -1.85 | 0.074 | -3.15977 | 0.154977 |
| Spacz | -0.03527 | 0.177178 | -0.2 | 0.844 | -0.39712 | 0.326575 |
| spadan | -0.92442 | 0.522595 | -1.77 | 0.087 | -1.9917 | 0.142861 |
| Spafin | -0.6478 | 0.385154 | -1.68 | 0.103 | -1.43439 | 0.138787 |
| spafra | -1.69918 | 0.75183 | -2.26 | 0.031 | -3.23462 | -0.16374 |
| spagre | -0.38408 | 0.363962 | -1.06 | 0.3 | -1.12739 | 0.359226 |
| Spahk | -0.04886 | 0.243872 | -0.2 | 0.843 | -0.54691 | 0.449193 |
| Spaire | -0.34498 | 0.291993 | -1.18 | 0.247 | -0.94131 | 0.251348 |
| spager | -2.18172 | 1.322471 | -1.65 | 0.109 | -4.88257 | 0.519124 |
| Spajap | -2.74124 | 1.367371 | -2 | 0.054 | -5.53378 | 0.051304 |
| Spako | -1.31468 | 0.657442 | -2 | 0.055 | -2.65736 | 0.027994 |
| spamex | -0.57695 | 0.515136 | -1.12 | 0.272 | -1.629 | 0.475096 |
| spaneth | -1.12827 | 0.777815 | -1.45 | 0.157 | -2.71678 | 0.46024 |
| spanor | -0.74947 | 0.454039 | -1.65 | 0.109 | -1.67675 | 0.177797 |
| Spapol | -0.61815 | 0.433444 | -1.43 | 0.164 | -1.50336 | 0.26706 |
| Sparu | -1.35625 | 0.756638 | -1.79 | 0.083 | -2.90151 | 0.18901 |
| Spaita | -1.77725 | 1.121065 | -1.59 | 0.123 | -4.06677 | 0.512274 |
| spasve | -0.94521 | 0.60027 | -1.57 | 0.126 | -2.17112 | 0.280709 |
| spasvi | -1.38688 | 0.754514 | -1.84 | 0.076 | -2.92781 | 0.154044 |
| spatur | -0.4058 | 0.465663 | -0.87 | 0.39 | -1.35681 | 0.545207 |
| spaun | -1.6189 | 1.057368 | -1.53 | 0.136 | -3.77834 | 0.540529 |
| spauk | -0.11141 | 0.178421 | -0.62 | 0.537 | -0.4758 | 0.252971 |
| spausa | -2.90811 | 1.572649 | -1.85 | 0.074 | -6.11989 | 0.303666 |

Arellano-Bond test for $\mathrm{AR}(1)$ in first differences: $\mathrm{z}=-3.15 \mathrm{Pr}>\mathrm{z}=0.002$ Arellano-Bond test for $\operatorname{AR}(2)$ in first differences: $z=-1.70 \operatorname{Pr}>z=0.089$

## REFERENCES

Anderson J.and E. van Wincoop E. (2003) "Gravity with gravitas: A solution to the border puzzle", American Economic Review, 93, 1, 170-192.

Anderson T.W. and C. Hsiao (1981) "Estimation of Dynamic Models with Error Components", Journal of the American Statistical Association, 76, 598606.

Arellano M. and S. Bond (1991) "Some Tests of Specification for Panel Data: Monet Carlo Evidence and a Application to Employment Equations", Review of Economic Studies, 58, 277-297.

Arellano M. and O. Bover (1995) "Another look at the instrumental variable estimation of error-components models", Journal of Econometrics, 68, 29-51.

Baldwin R. (1994), Towards an Integrated Europe, CEPR, London.
Baltagi B.H. (2001) Econometric Analysis of Panel Data, John Wiley and Sons, New York.

Blundell R. and S. Bond (1998) "Initial condition and moment restrictions in dynamic panel data models", Journal of Econometrics, 68, 29-51.

Bond S. (2002), "Dynamic Panel Data Models: A Guide to Micro Data Methods and Practice", working paper 09/02 Institute for Fiscal Studies, London.

Brenton P. and F. Di Mauro (1999), "The Potential Magnitude and Impact of FDI Flows to CEECs", Journal of Economic Integration, 14, 1.

Bun M. and F. Klaassen (2002) "The Importance of Dynamics in Panel Gravity Models of Trade", discussion Paper presented at the European Economic Association Meeting, Venice, August 22, 2002.

De Grauwe P. and F. Skudelny (2000) "The Impact of EMU on Trade Flows", Weltwirtshaftliches Archiv, 136, 381-402.
de Nardis S. and C. Vicarelli (2003), "Currency Union and Trade: The Special Case of EMU", Weltwirtshaftliches Archiv, 139, 4.

Disdier A.C. and K. Head (2003), "Exaggerated Reports on the Death of Distance: Lessons from a Meta-Analysis", mineo.

Egger P. (2000a), "A Note on the Proper Specification of the Gravity Equation", Economic Letters, 66, 381-402.

Egger P. (2000b), "European Exports and Outward Foreign Direct Investment: a Dynamic Panel Data Approach", WIFO Working Paper, 129.

Egger P. (2002), "An econometric view on estimation of gravity models and the calculation of trade potential", The World Economy, 25, 2, 297-312.

Eichengreen B. and D. Irwin (1997), "The role of history in bilateral trade flows", in: The Regionalization of the World Economy, Frankel J., ed., University of Chicago Press, 33-57.

Evenett S. and W. Keller (2002), "On theories explaining the success of the gravity model", Journal of Political Economy,, 110, 281-316.

Gros D. and Gonciarz A. (1996), "A note on the trade potential of Central and Eastern Europe", European Journal of Political Economy, 12, 709-721.

Hamilton C.B. and A.L. Winters (1992), "Opening Up International Trade with Eastern Europe", Economic Policy, 14, 77-116.

International Trade Center (2003), "TradeSim. A Gravity Model for the Calculation of Trade Potentials for Developing Countries and economies in transition", Technical report, UNCTAD - WTO.

Matyas L. (1997), "Proper Econometric Specification of the Gravity Model", The World Economy, 20, 3, 363-368.

Matyas L. (1998) "The Gravity Model: Some Econometric Consideration", The World Economy, 21, 3, 397-401.

Melitz J. (2001), "Geography, trade and currency unions", CEPR Discussion Paper, 2987.

Nickell S. (1981), "Biases in dynamic Models with Fixed Effects", Econometrica, 49, 1417-1426.

Nilsson L. (2000), "Trade integration and the EU economic membership criteria", European Journal of Political Economy, 16, 807-827.

Rivera S.A. (2003), "Key Methods for Quantifying the Effecs of Trade Liberalization", Technical Report 3583, International Economic Review US International Trade Commission.

Rose A. and E. van Wincoop (2001), "National money as a barrier to international trade: The real case for currency union", American Economic Review, 91, 2, 386-390.

UNCTAD (1999), "UNCTAD's contribution to the implementation of the united nations new agenda for the development of Africa in the 1990s: African transport infrastructure, trade and competitiveness", Technical report, UNCTAD, report by the UNCTAD Secretariat. TD/B/46/10.

Wang Z. and A.L.Winters (1992), "The Trading Potential of Eastern Europe", Journal of Economic Integration, 7, 113-136.


[^0]:    ${ }^{1}$ The UNCTAD-WTO International Trade Centre (ITC) has recently developed a gravity model called TradeSim (International trade Centre 2003) with the main objective of estimating bilateral trade flows of Developing Countries with any of their partner countries. The model has been realized for supporting country member institutions, trade representatives and international institutions to assess actual trade potentials of countries with limited trade relations in the past. As an example, a previous version of TradeSim has been used by UNCTAD to estimate the impact of infrastructure on trade for several African countries (Unctad 1999).

[^1]:    ${ }^{2}$ The main finding of the EU-CEECs literature is that the actual level of EU-CEECs trade due to the effectiveness of pre-accession agreements - the Europe Agreements in particular - has reached its potential level. Most of the past trade potential has already been realized and the expected effects of further EU enlargement to the East will be modest, in terms of both adjustment costs and expected gains (see Gros and Gonciarz 1996 on this view and Nilsson 2000 for a critique).

[^2]:    ${ }^{3}$ The countries are the European countries that joined the euro in 1999: Austria, Belgium, Finland, France, Germany, Ireland, Italy, Luxemburg, the Netherlands, Portugal, and Spain. Data for Belgium and Luxemburg have been aggregated.
    ${ }^{4}$ They are Argentina, Australia, Brazil, Canada, China, Czech Republic, Denmark, Korea, Hong Kong, Hungary, Japan, Mexico, Norway, Poland, Romania, Russia, Sweden, Switzerland, Turkey, United Kingdom, United States.
    ${ }^{5}$ John Haveman's database is available on the web at the following URL http: //www.macalester.edu/research/economics/PAGE/HAVEMAN/Trade.Resources/Data/G avity/dist.txt.

[^3]:    ${ }^{6}$ From an econometric point of view, it has been shown that fixed effects methodology has to be preferred to random effects models in the analysis of bilateral trade flows (Egger 2002). See also Baldwin (1994) and Mathyas $(1997,1998)$ for a description of further advantages of this methodology.

[^4]:    ${ }^{7}$ A well known problem in works adopting gravity equations is the measurement of geographical distance. If distance reflects comparative advantages related to geography (Melitz 2001), it is not clear which sign can be expected for: an increase in distance might increase, not diminish, trade, if differences in comparative advantage prevail. A fixed-effect estimation bypasses this kind of problems by including distance in bilateral constant terms.

[^5]:    ${ }^{8}$ If trade is a static process, the within estimator is consistent for a finite time dimension $T$ and an infinite number of country-pairs $N$. But if trade is a dynamic process, the estimate of a dynamic panel such as our static model (1) with the inclusion of a lagged dependent variable is more complex. If country specific effects are unobserved, they are included in the error term; the introduction of the lagged dependent variable on the right hand side of the equation leads to correlation between the lagged dependent variable and the error term that (for a finite $T$ and an infinite $N$ ) renders least square estimator biased and inconsistent. If time dimension $T$ is fixed, the transformation needed to wipe out the country-pair fixed effects could not resolve the problem: the LS estimator will lead again to biased and inconsistent results since the correlation between the transformed lagged dependent variable and the error term will not tend to zero even if the cross section dimension $N$ increases. A within estimator applied to a first order autoregressive model yields consistent estimates only when the number of time periods $T$ is large (Nickell, 1981).
    ${ }^{9}$ The first step consists in differencing the equation (such as (1)) in order to remove the fixed effects. Since the transformed error term is now contemporary correlated with $\ln \left(E X P_{i t-1}\right)$ the estimates will still be inconsistent. So, in the second step Anderson and Hsiao suggest that either the two period lagged difference or the two period lagged level of dependent variable could be used as instrument for $\ln \left(E X P_{i t-1}\right)$, as both are correlated with the latter term while are uncorrelated with $\Delta\left[\right.$ epsilon $_{i t}$; both instruments will lead to a consistent estimator. Building on that intuition Arellano and Bond (1991) suggested that significant efficiency gains may be reached by using the Hansen two-step generalized method of moments (GMM) estimator. They identified how many lags of the dependent variable and of the pre-determined variables were valid instruments and how to combine these lagged levels with first differences of the strictly exogenous variables into a potentially very large instrument matrix.

[^6]:    ${ }^{10}$ The only case that runs against that evidence is the case of Austrian exports towards Romania.

