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A typical problem of the seasonal adjustment procedures arises when the 
observed series is subject to structural breaks. In fact, using the full time 
interval, the seasonal adjusted series can differ from the "true" seasonal adjusted 
series, with unclear evidence showed by the usual diagnostic tests. Often the 
researcher has to decide where cut-off the observed series to obtain a 
homogeneous span; this is generally performed by a simple visual inspection 
studies of the graph of the series. In this paper we propose a statistical criterion 
based on a distance measure between filters, evaluating its performance with 
Monte Carlo experiments. 
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Seasonal adjustment procedures generally requires long time series. Moreover, 
the series to be adjusted should not be characterised by structural breaks. Indeed, 
the most recent seasonally adjustment procedures are robust against many type  
of breaks. In this paper we consider the procedure TRAMO-SEATS, which 
represents a time-series by means of an ARIMA model, decomposing it into a 
seasonal and a non-seasonal part. While this procedure is robust against many 
types of outliers, which can represent a break in the series, it relies, nevertheless, 
on the constancy of the ARIMA coefficients.  
In this paper we analyse the effect of imposing this assumption when it is not 
true on the performance of seasonal adjustment. Moreover, we propose a simple 
statistical device to detect this occurrence.  
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Un problema frequente che deve affrontare chi si occupa di destagionalizzazione 
è costituito dalla presenza di EUHDN�strutturali nella serie grezza. L’inclusione del 
EUHDN�può infatti determinare un’errata stima della serie destagionalizzata, senza 
che ciò venga necessariamente evidenziato dagli ordinari test diagnostici. 
L’analista ha dunque la necessità di troncare la serie originaria per ottenerne una 
omogenea,  spesso con l’ausilio di metodi grafici. In questo lavoro viene 
proposto un criterio statistico, basato su una misura di distanza tra filtri, criterio 
che viene valutato per mezzo di un esperimento Monte Carlo. 
 
 
 
 
 
 
 
Classificazione JEL: C32. 
 
Parole chiave: Filtri lineari, EUHDN strutturali, distanza. 
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The growing use of seasonal adjustment methods by agencies producing official
statistics has lead to a more careful evaluation of the test statistics made avail-
able by seasonal adjustment procedures. Among the most used procedures we can
distinguish between ad hoc methods (such as X-11, X12-RegARIMA, see Find-
ley et al., 1998) and model-based methods (such as TRAMO-SEATS, see Gómez
and Maravall, 1996). Both the procedures are based on the application of linear
filters, even though many other elements (e.g. outlier correction) can make sea-
sonal adjustment an essentially non-linear transformation (Ghysels et al., 1996).
While X-12-RegARIMA is basically a nonparametric approach, the application of
TRAMO-SEATS needs a considerable effort in order to assess the fitting of the
ARIMA model representation for the observed series. This is an important ob-
jective, considering the influence of the model in the estimation of the seasonal
component.

In this paper we concentrate on a particular aspect of the model estimation: the best
choice of the length of the series which is to be modelled. In fact in the seasonal
adjustment context there is a trade-off between the need for a long time series
in order to better estimate the ARIMA model and the implied seasonal factors,
and the necessity to avoid modelling a time series containing a structural break,
i.e. a series whose data generating process is changing over time. The problem
of structural breaks in the general regression model is quite known and there are
a considerable set of tests to detect such occurrences; for example, the classical
Chow (1960) test for the simple case of one structural break at a known time, the
Andrews (1993) test for structural change at an unknown point and the Andrews
and Ploberger (1994) test for � : � structural changes.

However, in the seasonal adjustment procedures, neither the occurrence of a break
always implies a bad performance of usual tests statistics on estimated residuals,
nor it is always implied by them. Ghysels and Perron (1993) note that the X-11
routine is not invariant with respect to breaking trends and level shifts and Ghysels
and Perron (1996) show that the power and the size of their structural change test
can be affected by the filtering of the X-11 procedure. In a model-based context,
Planas (1998) noted that the problems caused by the presence of nonlinearities can
be by-passed using intervention variables; in fact, in many simulation experiments
the results of the typical specification tests conducted on the estimated residuals are
consistent with a good fitting and the n.i.i.d. hypotheses on disturbances. Never-
theless, in the same paper it is showed that the threshold models (that are particular
structural change models) often present residual autocorrelation; in addition, the
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eventual persistent nonlinearity is generally found in the irregular component, that
is a part of the seasonal adjusted series. In other words, the structural changes
in the observed series can affect the outcome of seasonal adjustment procedures,
probably depending on the size of the change and on its type.

Moreover, the main objective of the model being seasonal adjustment, one might
not be interested at all in the occurrence of a break, unless it causes a major bias
in the estimate of the seasonally adjusted series.

This is why we propose here a measure based on the concept of distance between
seasonal filters as a way to assess the existence and the relevance of a break in a
time series in the context of seasonal adjustment problem.

In the next section the tools used in this paper to derive the proposed procedure
are briefly described. In section 3 this procedure is evaluated with some Monte
Carlo experiments. Section 4 illustrates an application to a real case. Some final
remarks follow.

�� 722/6 2) $1$<6,6

Different spans of a time series can be generated from different processes. In prac-
tice, this fact can arise for various causes; for example, a change in the survey
method or an exogenous shock (the oil shocks are typical examples of this last case,
known in econometric literature as structural change). In the seasonal adjustment
case we are interested in choosing the longest homogeneous span of data. A se-
ries generated by a certain process until the time t and by a different one thereafter
would probably need different seasonal extraction filters in the two sub-periods.
Given that interest in seasonal adjusted series normally refers to the last period, the
main purpose is not the detection of the precise location of the structural break; in-
stead, it is the choice of the longest period which provides a seasonal adjusted
series as similar as possible to the true unobserved one. The aim of this section
is to provide some tools able to help detecting the cutting-off time interval. In
particular, the concept of linear filters and the formalization of a distance measure
between filters will be briefly recalled.

��� /LQHDU )LOWHUV DQG 0RGHO�%DVHG $SSURDFK

If we consider a process %w, a frequently applied transformation is the following:

+w ' �Eu�%w '
v

[

m@�u

@m%w�m� (1)
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Operation illustrated in (1) is referred as the application to %w of a OLQHDU WLPH LQ�

YDULDQW ILOWHU, represented by the lag polynomial �Eu�cwhere u is the lag operator.
The main features of the application of such a filter are better understood if we re-
sort to the frequency domain representation. In fact, taking the Fourier transform
of the filter (1), that is considering u ' e�l$, with / representing a frequency
expressed in radians, we get the IUHTXHQF\ UHVSRQVH IXQFWLRQ of the filter:

K E/� '
v

[

m@�u

@me�l$m (2)

which describes the way a sinusoid of frequency / is transferred from the input
process %w to the output +w.

The function defined in (2) is, in general, complex-valued. It can then be expressed
in polar form:

K E/� ' � E/� e�l!+$,� (3)
Equation (3) makes clear that the effect of the application of a linear filter can be
split in two parts. The first is expressed by the function � E/�, which is termed the
JDLQ of the filter, and determines the extent with which each periodic component
of frequency / is multiplied by the filter itself. The second effect is due to the
term � E/�, which is known as the SKDVH VKLIW, and produces a shift in time of the
input process. In order to avoid the presence of the phase shift it is sufficient that
the filter is a symmetric one, that is @m ' @�m . In this case the action of the filter is
completely specified by the gain and, denoting the spectrum of the process %w and
+wc respectively, as }{E/� and }|E/�, the following relation holds:

}|E/� ' � E/�5
}{E/�

Therefore, an ideal seasonal adjustment filter would have a squared gain of zero
around seasonal frequencies and unit gain at all the others, so as to annihilate sea-
sonal movements while leaving unchanged the rest of the series. The search for
such a filter has been the traditional way to deal with seasonality, adopted by so
called DG�KRF filters like X-11.

An alternative is the PRGHO EDVHG approach; in particular we are here concerned
with the $5,0$ PRGHO EDVHG approach (Burman, 1980), upon which TRAMO-
SEATS is constructed. In this case an ARIMA model fits the series which is
to be seasonally adjusted, and ARIMA models for the unobserved components
(trend, seasonal, irregular) are derived, according to some identification assump-
tions (Maravall, 1995). Optimal estimators (in a mean square sense) of the unob-
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served components can then be constructed by means of linear filters, which have
the advantage to adapt themselves to the stochastic features of the components to
be estimated. In TRAMO-SEATS, the wiener-Kolmogorov filter is used. Con-
sequently, some of the key features of the components depend on the estimated
filters.

��� 'LVWDQFH EHWZHHQ )LOWHUV

A useful tool to compare two ARIMA models is represented by the idea of distance
between models. This concept was introduced by Piccolo (1990), who considered
the class of ARIMA invertible processes to define the metrics:

_ '

%

4
[

n@4

EZ4n � Z5n�
5

&4@5

where Zm E�� '
�

� n Zm4� n Zm5�5 n � � �
�

is the AR expansion of the � � |�

(� ' �c 2) ARIMA model. This metrics was used in a seasonal adjustment context
by Otranto and Triacca (2001) to compare direct and indirect seasonal adjustment
within the framework of model-based procedures.

An alternative measure of distance has been recently described by Depoutot and
Planas (1998), who propose a direct comparison of the filters. Dealing with sea-
sonal adjustment, this last concept seems more natural with respect to Piccolo’s
distance. In fact, if a model-based approach is adopted, linear filters are explic-
itly considered; if an ad hoc method is used (like X-11), the filter adopted has not
necessarily a model-based interpretation, making unapplicable Piccolo’s distance.
Depoutot and Planas use the filter distance to compare the empirical filters of X-11
and the Wiener-Kolmogorov filters derived by the ARIMA model-based approach.

To define this distance let %w a seasonal time series, that is decomposed in the
nonseasonal part ?w and the seasonal component rw:

%w ' ?w n rw�

Let s4 E�� and s5 E�� be two filters with length, respectively, o4 and o5, which
extract two alternative seasonal adjusted series. The spectrum of each estimator
can be expressed as:

}m E/� '
�

�sm

�

e�l$
�
�

�

5
}{ E/� � ' �c 2 (4)

where

sm

�

e�l$
�

'

u �

[

n@�u�

smne�ln$c

}{ E/� represents the spectrum of the observed series, and
�

�sm

�

e�l$
�
�

� is the gain
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of the filter of the � � |� estimator. From equation (4) it is clear that the two filters
produce the same estimator if they have the same gain. From this consideration,
the distance proposed by Depoutot and Planas has the following form:

_ Es4c s5� '
�

Z

�
]

3

�

�s4

�

e�l$
�

� s5

�

e�l$
�
�

�

5
_/�

Considering symmetric filters, the distance measure, developed in terms of Fourier
analysis, can be defined as:

_ Es4c s5� ' Es43 � s53�
5 n 2

u
[

n@4

Es4n � s5n�
5 (5)

with o ' 4@ Eo4c o5�.

�� 7+( ',67$1&(�%$6(' 352&('85(

The proposed procedure consists of estimating an ARIMA model on the full series
and then making one year reduction of the period considered, re-estimating the
ARIMA model. The distance measure between the seasonal filter obtained using
the full series and that obtained from the reduced series is then evaluated at each
step.

The key feature of the distance is its possible link with the Root Mean Squared Er-
ror (RMSE) which affects the estimation of the seasonally adjusted series. This can
be evaluated only with a simulation exercise; in fact, while the distance proposed
can be calculated also in a real context, the RMSE is in general not available, given
the nature of the seasonally adjusted series, which is an unobserved component.

��� 7KH 0RQWH &DUOR 'HVLJQ

To evaluate the performance of this procedure and to explain its operative use-
fulness, we perform a Monte Carlo experiment. We have generated 500 monthly
series of length 20 years, following the ARIMA(0,1,1)(0,1,1) model (so called
$LUOLQH PRGHO ):

+w '
E� n w4��

�

� n w45�45
�

�w

E� � �� E� � �45�
�w � UU�Efc j5�c (6)

for various combinations of the parameters w4 and w45. If we consider the observed
series composed by the sum of the non seasonal part ?w and the seasonal component
rw, the canonical decomposition performed by TRAMO-SEATS is:

?w '

�

� n wq
4� n wq

5�5
�

�q
w

E� � ��5 �q
w � UU�Efc j5

q�c (7)
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Table 1: Parameters of the simulated series

Series Parameters
NB1 w4 ' �f�bf( w45 ' �f�bD
NB2 w4 ' �f�bf( w45 ' �f�Sf
NB3 w4 ' �f�bf( w45 ' �f��f
NB4 w4 ' �f�Sf( w45 ' �f�Sf
NB5 w4 ' �f��f( w45 ' �f�Sf
NB6 w4 ' �f�Sf( w45 ' �f��f
NB7 w4 ' �f��f( w45 ' �f��f
B1 w4 ' �f�bf( w45 ' f�ff , �f�bD
B2 w4 ' �f�bf( w45 ' f�ff , �f�Sf
B3 w4 ' �f�bf( w45 ' �f�bf , �f��f
B4 w4 ' �f��f , �f�bD( w45 ' �f�bf
B5 w4 ' �f��f , �f�Sf( w45 ' �f�bf
B6 w4 ' �f��f , f�ff( w45 ' �f�bf
B7 w4 ' �f�bf( w45 ' �f��f , �f�bD
B8 w4 ' �f�bf( w45 ' �f��f , �f�Sf
B9 w4 ' �f�bf( w45 ' �f��f , f�ff
B10 �4 ' f��f , f�Sf( w45 ' �f�bf
B11 �4 ' f��f , f�bf( w45 ' �f�bf
B12 �4 ' f�bf( w45 ' �f�Sf , f�bf
B13 �4 ' f�bf( w45 ' �f��f , f�bf

rw '

�

� n wv
4� n wv

5�5 n � � � wv
44�44

�

�v
w

E� n � n �5 n � � � �44�
�v

w � UU�Efc j5
v�c (8)

with parameters derived by w4, w45 and j. To obtain the simulated series, the com-
ponents (7) and (8) have been generated separately and then aggregated so as to
be consistent with the desired combination of w4, w45 and j in (6). For example,
generating a series from (7) with coefficients

wq
4 ' ���DSeDc wq

5 ' f�DHfbc j5
q ' f�SDbHSc

and a series from (8) with coefficients

wv
4 ' f�bfS�c wv

5 ' f�SH�.c wv
6 ' f�efSec wv

7 ' f���fSc wv
8 ' �f���e2c

wv
9 ' �f��fbSc wv

: ' �f�eeH2c wv
; ' �f�D�fSc wv

< ' �f�DSDec

wv
43 ' �f�D.fbc wv

44 ' �f�DHDbc j5
v ' f�SD.HSc

and summing up them, is equivalent to generate a series from (6) with coefficients

w4 ' �f�Sc w5 ' �f�Sc j5 ' �c
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with the advantage that the unobserved components are known.

The choice of the airline model is justified by the empirical experience; in fact it fits
in a very good way many real series. For example, Fischer and Planas (2000) found
that the 55.6% of more than 13000 monthly economic series was well described
by the airline model.

In the same way we have generated series from another usual model, the ARIMA
(1,1,0)(0,1,1):

+w '

�

� n w45�45
�

�w

E� � �� E� � �45� E� n �4��
�w � UU�Efc j5�c (9)

for various combinations of the parameters �4 and w45.

Generating these series we have considered the case without break (series prefixed
with NB in Table 1) and the cases with breaks of various size, located in the mid-
dle of the series (series prefixed with B); the arrow indicates the change in the
parameters.

We have calculated the distance following this scheme:

1) seasonal adjust the series;

2) calculate the RMSE of the seasonal adjusted series with respect the true seasonal
adjusted series;

3) calculate the distance (5) between the filter of the seasonal adjusted series with
the full information (20 years) and the filter of the actual seasonal adjusted series
(in the first step we compare the same series of 20 years so that the distance is 0);

4) cut-off one year of the aggregate series and start again from step 1 till a series
of 6 years remains.

��� 7KH 5HVXOWV RI WKH 6LPXODWLRQ ([SHULPHQW

In this sub-section we try to resume the main results of the previous simulation
exercise.

The first thing to evaluate is the behavior of the RMSE, which is the variable we
are main interested in. Table 2 shows the averages of the RMSE of the estimated
seasonally adjusted series using the full span of data and using just the first ten
years. In the case of the series which do not have a break, the reduction of the span
of data leads to an increase in the RMSE. This is something expected, given the
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Table 2: Statistics on the simulated series

Series
Average RMSE

(10-year)
Average RMSE

(full series)

% Reduction(-)/
Increase(+)

in the average RMSE
Distance

NB1 30.08 22.06 -26.7 0.008
NB2 39.27 36.65 -6.7 0.003
NB3 39.43 38.01 -3.6 0.001
NB4 35.50 32.92 -7.3 0.002
NB5 37.89 35.20 -7.1 0.002
NB6 36.42 34.73 -4.6 0.001
NB7 40.03 38.22 -4.5 0.001
B1 29.34 43.28 47.5 0.061
B2 38.65 39.34 1.8 0.022
B3 39.20 35.01 -10.7 0.008
B4 30.98 27.31 -11.8 0.012
B5 27.66 23.88 -13.7 0.008
B6 32.72 25.63 -21.7 0.007
B7 29.34 40.24 37.2 0.038
B8 38.66 38.92 0.7 0.008
B9 27.66 35.10 26.9 0.013
B10 34.90 37.47 7.4 0.059
B11 29.34 34.44 17.4 0.005
B12 29.40 29.45 0.2 0.010
B13 29.44 31.66 7.5 0.027
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Figure 1: Evolution of the distance measure for series NB1
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increasing precision in the estimated model one can get from a longer span of data.
What is less obvious is the fact that also in some cases where a break is present,
nevertheless the RMSE decreases using a longer span of data. This is always the
case, in particular, when the break occurs in the w4 parameter (series B4-B6). In
the other cases, the occurrence of a break determines an increase or a stabilization
of the RMSE. The next step is to understand if the behavior of the RMSE is well
tracked by the distance measure, which is the operational device that should allow
us to detect the significance of a break in the context of seasonal adjustment. In so
far the simulated series are concerned, we see that there is a positive correlation
(0.66) between the increase in the RMSE when using a longer span of data and
the distance between filters. The latter, in particular, takes always a low value in
the case of no break, less than, say, 0.01. The only significant departure from this
pattern is showed by the series B11, which is characterized by a strong break in
the �4 coefficient.

The previous analysis has showed a possible usefulness of the distance measure to
help detecting a break in the DGP of the observed series. A way to use it in prac-
tical applications can be represented by the plot of the distance against the years
reduction made. This would produce, in the case of no break, a monotonically
increasing function as in Figure 1, consistent with the path of the RMSE.

This figure represents the typical shape of the distance measure when no break
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Figure 2: Distance pattern for two series with a break
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exists. The other NB series are not reported here, but they are all similar to the one
reported. Only in the case of series NB3 the distance is a little noisier.

When considering the broken series, quite a different picture emerges. When the
break causes, adding more data, a significant increase in the RMSE, the distance
shows a concave form, with a rebound close to break point, mirroring the path of
the RMSE. In the other cases, a discontinuity is evident in the graph. Only in four
cases the graph does not show a departure from the shape of the no break case:
series B5, B6, B8 and B11. In the first two cases the break does not create any
problem in term of RMSE of the seasonal adjusted data. In the third the effect is
marginal; more difficult to explain is the last case, when a significant break occurs,
but is not picked up by the distance. The graphs in Figure 2 show the pattern of
the distance and of the RMSE for two series, one with a strong departure from the
shape of the no break case, the other with a less strong departure.

Finally, if we agree that the RMSE is the criterion to evaluate the effect of a struc-
tural break in the seasonal adjustment procedure, the distance (5) is a useful proxy
of RMSE to decide to cut-off the series. If the distance function is approximately
monotically increasing, the full observed series can be used for the seasonal adjust-
ment procedure; if the distance function is a concave curve, the span corresponding
to the turning point can be adopted as a good interval.

16



�� $ 678'< &$6(� 7+( 5(7$,/ 6$/(6 ,1 ,7$/<

In Italy, from January 1996, a new survey on retail sales started, with a different
methodology with respect to the previous one. This was caused essentially by new
indications of the Short-Term Statistics Regulation, changes in the structure of the
retail sales and the change of base in the construction of the index (from 1990
to 1995).The classification criteria, the weighting scheme, the sample size and its
composition have been changed. The official substitution of the old series with the
new series began in May 1997, and the data from January 1990 were reconstructed
following the new methodology.

It is clear that this changes in the series can cause a structural break in the observed
series; the graph in Figure 3 shows a change in the dynamic of the series in 1993; in
fact the previous period presents a peak in March that disappears from 1993. In the
same way, from 1994 the peak in July has disappeared. In addition the seasonality
seems more regular after 1996. In this section we analyze with our methodology if
these changes can affect the seasonal adjustment procedure; in particular we refer
to the TRAMO-SEATS routine, adopting an airline model as the (6).

Figure 3: Total retail sales (1990-99)
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We have reduced the series year by year till the interval 1996-1999. In Table 3 the
estimation of the moving average coefficients and the dynamics of the distance
are reported. We can note a sudden change in the seasonal MA coefficient within
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Table 3: Total Retail Sales:dynamics of the distance

Time interval w4 w45 distance
1990-99 -0.78 -0.11 0.000
1991-99 -0.76 -0.12 0.001
1992-99 -0.76 -0.10 0.000
1993-99 -0.69 -0.01 0.002
1994-99 -0.90 0.03 0.056
1995-99 -0.91 0.01 0.044
1996-99 -0.34 0.03 0.016

the interval 1993-1999 and a change in the sign within the successive interval.
The distance shows a clear break with effects on seasonal adjustment in 1994;
the distance has an abrupt jump from 0.002 to 0.056. It is more evident then the
simulation cases and it can be appreciated in Figure 4.

Figure 4: Total retail sales: evolution of the distance

1990-99 1991-99 1992-99 1993-99 1994-99 1995-99 1996-99
0.00

0.01

0.02

0.03

0.04

0.05

0.06

From this analysis it seems clear that the structural break on the observed series
can affect the seasonal adjustment, which needs a reduction of the time interval.
The dramatic reduction of the distance with the 96-99 period maybe indicate a
new break in the series that affects the seasonal adjustment. But the proceeding of
the analysis with less data reduces so much the observations and it is not reliable.
Probably, a good choice is the interval 1994-1999.
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In this paper we have illustrated a simple procedure to evaluate the more con-
venient time interval in order to apply an ARIMA model based seasonal adjust-
ment procedure. The criterion is represented by a distance measure between filters
which provides a useful indication for the presence of structural breaks affecting
the estimation of the seasonal component; the choice is based on heuristic con-
siderations. The Monte Carlo simulations demonstrate the performance of this
approach; it is interesting to note that generally the chosen length is larger that
the correct one, permitting the presence of a short data generated from a different
process. The airline model was adopted in the Monte Carlo experiments given its
wide use in modeling seasonal economic time series and because it represents the
default model in TRAMO-SEATS. In addition, an ARIMA(1,1,0)(0,1,1) model
has been considered. Future work should study more in depth the properties of
the proposed measure; moreover, the implementation of such a device as a formal
statistical test deserves further investigation.
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