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ABSTRACT 

This paper provides a theoretical fractional cointegration analysis in a 
nonparametric framework. We solve a generalized eigenvalues problem. To this 
end, a couple of random matrices are constructed taking into account the 
stationarity properties of the differencesof a fractional p-variate integrated 
process. These difference orders are assumed to vary in a continuous and 
discrete range. The random matrices are defined by some weight functions. 
Asymptotic behaviors of these random matrices are obtained by stating some 
conditions on the weight functions, and by using Bierens (1997) and Andersen 
et al.(1983) results. In this way, a nonparametric analysis is provided. Moving 
from the solution of the generalized eigenvalue problem, a fractional 
nonparametric VAR model for cointegration is 
also presented. 

Keywords:  Fractional integrated process, Nonparametric methods, 
Cointegration, Asymptotic distribution, Generalized  eigenvalues 
problem. 

JEL Classification: C14, C22, C65. 



 

NON-TECHNICAL SUMMARY 

The concept of cointegration has been introduced by Granger (1981) and 
analyzed by Engle and Granger (1987). Most of the analyses have mainly 
considered the CI(1,1) cointegration case, in which two or more I(1) variables 
give rise to I(0) linear combinations and the long run relationships are derived 
with little or no restrictions on the short run dynamics. In order to avoid the 
knife-edge I(1)/I(0) distinction and to allow for potential slow adjustments 
towards long run equilibria,  fractional cointegration approaches have been 
proposed.  

In this paper new theoretical analysis on cointegration is proposed. The 
contribution of this work to the literature on cointegration is as follows: First, a 
nonparametric approach to solve a generalized eigenvalue problem for 
fractional integrated process is given. Second, a fractional nonparametric VAR 
model to show the usefulness of our theoretical analysis is presented. 

The eigenvalue problem is solved by considering the asymptotic behavior 
of two random matrices. Such matrices are constructed by taking into account 
the stationarity properties of the differences of a fractional p-variate integrated 
process. These difference orders are assumed to vary in a continuous and 
discrete range. The continuous case is general, since it consider the whole set 
of information. However, to let our analysis be useful in economic applications, 
the discrete case is also provided in such a way that the most part of the 
differences orders are included. The asymptotic convergence results give 
nonparametric analysis. 



 

UN’ANALISI DI COINTEGRAZIONE FRAZIONATA 

SINTESI 

In questo lavoro si propone un approccio teorico allo studio della cointegrazione 
in un contesto frazionato. Il problema generalizzato degli autovalori viene risolto 
con una tecnica nonparametrica. Per risolvere tale problema, si costruiscono 
due matrici casuali, distinguendo la parte non-stazionaria e stazionaria delle 
differenze del processo frazionato. L’ordine delle differenze varia nel campo 
continuo e discreto. Il caso discreto è considerato perchè particolarmente utile 
per le applicazioni economiche. Le due matrici casuali sono inoltre definite sulla 
base di alcune funzioni peso. Delle matrici casuali si ottengono le distribuzioni 
asintotiche definendo alcune condizioni sulle funzioni peso. L’analisi non-
parametrica è ottenuta con la convergenza asintotica. Una volta risolto il 
problema generalizzato degli autovalori, si presenta un modello VAR frazionato. 

Parole chiave:  Processi integrati frazionati, Metodi nonparametrici, 
Cointegrazione, Distribuzioni asintotiche, Problema 
generalizzato degli autovalori. 

Classificazione JEL: C14, C22, C65. 
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1 INTRODUCTION1

The concept of cointegration has been introduced by Granger (1981) and an-

alyzed by Engle and Granger (1987). Most of the analyses have mainly con-

sidered the CI(1,1) cointegration case, in which two or more I(1) variables give

rise to I(0) linear combinations and the long run relationships are derived with

little or no restrictions on the short run dynamics. In order to avoid the knife-

edge I(1)/I(0) distinction and to allow for potential slow adjustments towards

long run equilibria, fractional cointegration approaches have been proposed.

Consider a two-dimensional process (Xt;Yt) such that both variables are I(d)

processes. We say that Xt and Yt are fractionally cointegrated if there exists a

linear combination Ut = Yt−BXt such that Ut is I(dU ), with dU < d. Fractional

cointegration is a generalization of standard cointegration, where d and dU are

1 and 0, respectively. Parametric and semiparametric fractional cointegration

models have focused on the reduction of the memory parameter from d ≥ 1
2 to

dU < 1
2 , since cointegration is commonly thought if as a stationary relationship

between stationary, but cases in which the differencing parameter is less than 1
2

are also discussed, in particular in the context of financial time series analysis.

A partial list of works includes Jeganathan (1999), Breitung and Hassler (2002),

Davidson (2002), Robinson and Yajima (2002), Robinson and Hualde (2003),

Nielsen (2004), Marmol and Velasco (2004). While Jeganathan (1999), Phillips

and Kim (2001), Breitung and Hassler (2002), Davidson (2002) and Robinson

and Hualde (2003) and Marmol et al. (2002) developed parametric models,

Robinson and Yajima (2002), Nielsen (2004), Marmol and Velasco (2004) and

Robinson and Iacone (2005) worked in a semiparametric context.

In this paper new theoretical analysis on cointegration is proposed. The con-

tribution of this work to the literature on cointegration is as follows: First, a

nonparametric approach to solve a generalized eigenvalue problem for fractional

integrated process is given. Second, a fractional nonparametric VAR model to
1The authors would like to thank Massimo Franchi and Paolo Paruolo for helpful comments

and suggestions.
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show the usefulness of our theoretical analysis is presented.

The eigenvalue problem is defined by considering a combination of two random

matrices. Such matrices are constructed by taking into account the stationarity

properties of the differences of a fractional p-variate integrated process. These

difference orders are assumed to vary in a continuous and discrete range. The

continuous case is general, since it consider the whole set of information. How-

ever, to let our analysis be useful in economic applications, a discretization of

the continuous case is provided. The set of the rational number Q is considered,

since Q is dense in R, and then the most part of the differences orders are in-

cluded. The random matrices are defined by some weight functions. Asymptotic

behaviors of these random matrices are obtained and nonparametric analysis is

provided. Moving from the solution of the generalized eigenvalue problem, a

fractional nonparametric VAR model for cointegration is presented.

The paper is organized as follows. Section 2 presents the data generating pro-

cess. In Section 3 the continuous case is studied. Section 4 presents the discrete

case. In section 5 nonparametric fractional VAR model is proposed. Section 6

concludes.

2 DATA GENERATING PROCESS

In this section we describe the data generating process.

The data generating process Yt is assumed to be a fractional non explosive in-

tegrated process of order d satisfying the following definition.

Defintion 2.1 Given p ∈ N, a p-variate time series {Yt} is a fractional inte-

grated process with fractional degree of integration −1/2 < d < 1 if

Yt =
∞∑

j=0

cjεt−j with cj =
Γ(j + d)

Γ(j + 1)Γ(d)
, (1)

where {εt}t>0 is an i.i.d. p-variate vector sequence with zero mean. We denote

Yt ∼ I(d).

Following Robinson (2003), we have:

1. if −1/2 < d ≤ 1/2, then Yt is stationary;
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2. if 1/2 < d < 1, then Yt is nonstationary, non explosive and nonpersistent.

Assumption 2.1 There exists a p-squared matrix of lag polynomials in the lag

operator L such that

εt =
∞∑

j=0

Cjvt−j =: C(L)vt, t = 1, . . . , n, (2)

where vt is a p-variate stationary white noise process. Now we state some hy-

potheses on C(L).

Assumption 2.2 The process εt can be written as in (2), where vt are i.i.d.

zero-mean p-variate gaussian variables with variance equals to the identity ma-

trix of order p, Ip, and there exist C1(L) and C2(L) p-squared matrices of lag

polynomials in the lag operator L such that all the roots of detC1(L) are out-

side the complex unit circle and C(L) = C1(L)−1C2(L). The lag polynomial

C(L) − C(1) attains value zero at L = 1 with fractional algebraic multiplicity

equals to d. Thus, there exists a lag fractional polynomial

D(L) =
∞∑

k=0

DkLζk , Dk, ζk ∈ R, ∀ k = 1, . . . , +∞,

such that C(L)− C(1) = (1− L)dD(L) and ζk is increasing.

Therefore, we can write

εt = C(L)vt = C(1)vt + [C(L)− C(1)]vt = C(1)vt + D(L)(1− L)dvt. (3)

Let us define wt := D(L)vt. Then, substituting wt into (3), we get

εt = C(1)vt + (1− L)dwt. (4)

(4) implies that, given Yt ∼ I(d), we can write recursively

∆d−1Yt = ∆d−1Yt−1 + εt = ∆d−1Y0 + (1− L)wt − w0 + C(1)
t∑

j=1

vj . (5)

If rank(C(1)) = p−r < p, then the process ∆d−1Yt is cointegrated with r linear

independent cointegrating vectors. Since d < 1, if d − 1 < α < d + 1/2, then

∆αYt is cointegrated with r cointegrating vectors γ1, . . . , γr. In fact

Yt ∼ I(d) ⇒ ∆αYt ∼ I(d− α), −1/2 < d− α < 1. (6)
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Assumption 2.3 Let us consider Rr the matrix of the eigenvectors of C(1)C(1)T

corresponding to the r zero eigenvalues. Then the matrix RT
r D(1)D(1)T Rr is

nonsingular.

Assumption 2.3 implies that Yt cannot be integrated of order d̄, with d̄ > d. In

fact, if there exists d̄ > d such that Yt ∼ I(d̄), then the lag polynomial D(L)

admits a unit root with algebraic multiplicity d̄ − d, and so D(1) is singular.

Therefore RT
r D(1)D(1)T Rr is singular, and Assumption 2.2 does not hold.

3 THE GENERALIZED EIGENVALUES PROB-

LEM: THE CONTINUOUS CASE

The aim of this section is to construct a couple of random matrices, in order to

address the solution of the generalized eigenvalue problem.

We want to emphasize that such random matrices take into account the station-

ary and nonstationary part of the data generating process. To this end, we rely

on the α-th differences of Yt that can be stationary or nonstationary processes,

depending on the choice of α. The relationship between the difference orders

and the related process can be described as follows:

• if d− 1 < α < d− 1/2, then ∆αYt is nonstationary;

• if d− 1/2 < α < d + 1/2, then ∆αYt is stationary.

In this first part of the theoretical nonparametric cointegration framework, the

entire set of the admissible differences of Yt is considered. Fixed α ∈ (d− 1, d +

1/2), the α-th difference of the process Yt is opportunely weighted by some

functions depending on α. Then, all these terms are aggregated by integrating

on α.

The random matrices are assumed to be dependent on an integer number m ≥ p.

Let us fix k = 1, . . . ,m, and define the functions

Fk : [0, 1] → R; (7)
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Gk,α : [0, 1] → R, α ∈ (d− 1, d− 1/2);

Hk,α : [0, 1] → R, α ∈ (d− 1/2, d + 1/2).

Moreover, we consider a couple of sequences:

{φ1(n, α)} ⊆ R, α ∈ (d− 1, d− 1/2);

{φ2(n, α)} ⊆ R, α ∈ (d− 1/2, d + 1/2).

By using the previous definitions of functions and sequences, the random ma-

trices are constructed. They are, respectively,

Am :=
m∑

k=1

an,kaT
n,k; (8)

Bm :=
m∑

k=1

bn,kbT
n,k, (9)

where

an,k :=
Mnonst

n /
√

n√∫ ∫
Fk(x)Fk(y)min{x, y}dxdy

; (10)

bn,k :=
√

nMst
n√∫

Fk(x)2dx
, (11)

and

Mnonst
n =

1
n

n∑
t=1

Fk(t/n)∆d−1Yt +
∫ d−1/2

d−1

[
φ1(n, α)

n∑
t=1

Gk,α(t/n)∆αYt

]
dα;

(12)

Mst
n =

1
n

n∑
t=1

Fk(t/n)∆dYt +
∫ d+1/2

d−1/2

[
φ2(n, α)

n∑
t=1

Hk,α(t/n)∆αYt

]
dα, (13)

The main result of this work is obtained by an asymptotic analysis of a

particular combination of the random matrices. These random matrices are

defined on the basis of the weight functions F ’s, G’s and H’s is provided. Two

definitions are proposed in order to show that these weight functions belong to

three functional classes.
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Definition 3.1 Let us fix m ∈ N, k = 1, . . . m.

(i) There exists a function θ1 : (d− 1, d− 1/2) → R and φ1 : N× (d− 1, d−
1/2) → R such that

α 7→ θ1(α), θ1 ∈ L1(d− 1, d− 1/2)

and

∣∣∣√nφ1(n, α)
n∑

t=1

Gk,α(t/n)
∣∣∣ ≤ θ1(α), ∀α ∈ (−∞, d− 1/2).

(ii) For each α ∈ (−∞, d− 1/2), it results

lim
n→+∞

√
nφ1(n, α)

n∑
t=1

Gk,α(t/n) = 0; (14)

(iii) There exists a function θ2 : (d − 1/2, d + 1/2) → R and φ2 : N × (d −
1/2, d + 1/2) → R such that

α 7→ θ2(α), θ2 ∈ L1(d− 1/2, d + 1/2)

and

∣∣∣nφ2(n, α)
n∑

t=1

Hk,α(t/n)
∣∣∣ ≤ θ2(α), ∀α ∈ (d− 1/2, d + 1/2).

(iv) For each α ∈ (d− 1/2, d + 1/2), it results

lim
n→+∞

nφ2(n, α)
n∑

t=1

Hk,α(t/n) = 0; (15)

The functional classes Gm,α and Hm,α are

Gm,α :=
{

Gk,α : [0, 1] → R | (i), (ii) hold
}

. (16)

Hm,α :=
{

Hk,α : [0, 1] → R, | (iii), (iv) hold
}

. (17)

Definition 3.2 Consider the following conditions:

1√
n

n∑
t=1

Fk(t/n) = o(1); (18)
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1
n
√

n

n∑
t=1

tFk(t/n) = o(1); (19)

∫ ∫
Fi(x)Fj(y)min{x, y}dxdy = 0, i 6= j; (20)

∫
Fi(x)

∫ x

0

Fj(y)dxdy = 0, i 6= j; (21)

∫
Fi(x)Fj(x)dx = 0, i 6= j. (22)

The functional class Fm is

Fm :=
{

Fk : [0, 1] → R, Fk ∈ C1[0, 1] | (18) − (22) hold
}

. (23)

Bierens (1997) shows that the functional class Fm is not empty. He pointed out

that, if we define

F̄k : R → R

such that

F̄k(x) = cos(2kπx), (24)

and taking the restriction

Fk := F̄k|[0,1],

then Fk ∈ Fm.

Moreover, Gm,α and Hm,α are not empty, and they contain a huge number of

elements. Therefore, it is not restrictive to assume that the weights G’s and

H’s belong to these spaces. Some properties of Gm,α and Hm,α are showed, in

order to evidence the big cardinality of these spaces.

Proposition 3.1 Gm,α and Hm,α are closed with respect to the linear combina-

tion.

Proof We provide the proof only for the functional space Gm,α, being the one

for Hm,α analogous.

Given k = 1, . . . , m and α ∈ (−∞, d− 1/2), let us consider

Gj
k,α : [0, 1] → R, j = 1, . . . , N, N ∈ N
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such that Gj
k,α ∈ Gm,α.

Define

Gk,α :=
N∑

j=1

qjG
j
k,α, qj ∈ R, ∀ j = 1, . . . , N.

Conditions (i) and (ii) of Definition 3.1 can be rewritten by indexing with j the

sequence φ1 and the function θ1. We rewrite them, for sake of completeness.

Fix j = 1, . . . , N , where N ∈ N. Then

(i) There exists a function θj
1 : (−∞, d − 1/2) → R and φj

1 : N × (−∞, d −
1/2) → R such that

α 7→ θj
1(α), θ1 ∈ L1(−∞, d− 1/2)

and

∣∣∣√nφj
1(n, α)

n∑
t=1

Gj
k,α(t/n)

∣∣∣ ≤ θj
1(α), ∀α ∈ (−∞, d− 1/2).

(ii) For each α ∈ (−∞, d− 1/2), it results

lim
n→+∞

√
nφj

1(n, α)
n∑

t=1

Gj
k,α(t/n) = 0; (25)

The condition (i) is fulfilled. In fact, by choosing φ1 such that

φ1(n, α) = o(φj
1(n, α)), ∀ j = 1, . . . , N, as n → +∞,

then

lim
n→+∞

√
nφ1(n, α)

n∑
t=1

Gk,α(t/n) = lim
n→+∞

√
nφ1(n, α)

n∑
t=1

[ N∑

j=1

qjG
j
k,α(t/n)

]
=

=
N∑

j=1

qj

[
lim

n→+∞
√

nφ1(n, α)
n∑

t=1

Gj
k,α(t/n)

]
= 0.

Furthermore, by using φ1 as above, it results

∣∣∣√nφ1(n, α)
n∑

t=1

Gk,α(t/n)
∣∣∣ =

∣∣∣√nφ1(n, α)
n∑

t=1

[ N∑

j=1

qjG
j
k,α(t/n)

]∣∣∣ ≤
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≤
N∑

j=1

|qj |
∣∣∣√nφ1(n, α)

n∑
t=1

Gj
k,α(t/n)

∣∣∣ ≤
N∑

j=1

|qj |θj
1(α).

Since
N∑

j=1

|qj |θj
1(α) ∈ L1(−∞, d− 1/2),

condition (ii) holds.

As a consequence of the previous result, an interesting topological property of

Gm,α and Hm,α can be obtained.

Corollary 3.1 Gm,α and Hm,α are convex sets.

Proof. We provide only the proof for the functional space Gm,α.

For k = 1, . . . , m and α ∈ (−∞, d− 1/2), we define a couple of functions

Gj
k,α : [0, 1] → R, j = 1, 2.

such that Gj
k,α ∈ Gm,α.

Define q1, q2 ∈ [0, 1] such that q1 + q2 = 1, and the convex linear combination

function

Gk,α := q1G
1
k,α + q2G

2
k,α.

Since Proposition 3.1 implies Gk,α ∈ Gm,α, we have the thesis.

We want now to show a sufficient condition to characterize Gm,α and Hm,α.

Theorem 3.2 Fix α ∈ (−∞, d+1/2) and k = 1, . . . ,m. Define %k,α : [0, 1] → R,

and assume that there exists M > 0 such that

|%k,α(x)| ≤ M, ∀x ∈ [0, 1].

Then:

• %k,α belongs to Gm,α if α ∈ (−∞, d− 1/2);

• %k,α belongs to Hm,α if α ∈ (d− 1/2, d + 1/2).

Proof. For sake of simplicity, we denote % as H, when α ∈ (d− 1/2, d + 1/2),

and as G, when α ∈ (−∞, d− 1/2).

Standard analysis provides that

lim
n→+∞

1
n

n∑
t=1

Gk,α(t/n) =
∫ 1

0

Gk,α(x)dx. (26)
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Fixed α ∈ (−∞, d− 1/2), we define a sequence {ψ1(n, α)}n∈N such that

φ1(n, α) =
1

n3/2
· ψ1(n, α), (27)

lim
n→+∞

ψ1(n, α) = 0. (28)

Moreover, fixed n ∈ N, we assume that ψ1 ∈ L1(−∞, d− 1/2).

By (27), we have

∣∣∣√nφ1(n, α)
n∑

t=1

Gk,α(t/n)
∣∣∣ =

∣∣∣ψ1(n, α)
1
n

n∑
t=1

Gk,α(t/n)
∣∣∣ ≤

≤ |ψ1(n, α)|
∣∣∣ 1
n

n∑
t=1

Gk,α(t/n)
∣∣∣ ≤ |ψ1(n, α)|

∣∣∣ 1
n
· n ·M

∣∣∣ = M |ψ1(n, α)|.

By assuming θ1(α) = |ψ1(n, α)|, condition (i) of Definition 3.1 holds.

Furthermore, it results

0 ≤
∣∣∣√nφ1(n, α)

n∑
t=1

Gk,α(t/n)
∣∣∣ ≤ M |ψ1(n, α)|.

Thus, by (28) and by using a comparison principle, we get

lim
n→+∞

√
nφ1(n, α)

n∑
t=1

Gk,α(t/n) = 0.

Then, (ii) of Definition 3.1 holds, and Gk,α ∈ Gm,α.

Now, fixed α ∈ (d−1/2, d+1/2), we define a sequence {ψ2(n, α)}n∈N such that

φ2(n, α) =
1
n2
· ψ2(n, α), (29)

lim
n→+∞

ψ2(n, α) = 0. (30)

Moreover, we assume that |ψ2| ∈ L1(d− 1/2, d + 1/2).

By (29), some algebra gives

∣∣∣nφ2(n, α)
n∑

t=1

Hk,α(t/n)
∣∣∣ =

∣∣∣ψ2(n, α)
1
n

n∑
t=1

Hk,α(t/n)
∣∣∣ ≤

≤ |ψ2(n, α)|
∣∣∣ 1
n

n∑
t=1

Hk,α(t/n)
∣∣∣ ≤ |ψ2(n, α)|

∣∣∣ 1
n
· n ·M

∣∣∣ = M |ψ2(n, α)|.
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By assuming θ2 = |ψ2|, condition (iii) of Definition 3.1 holds.

Furthermore, as showed for Gk,α, (30) and a comparison principle give

lim
n→+∞

nφ2(n, α)
n∑

t=1

Hk,α(t/n) = 0.

Then, (iv) of Definition 3.1 is satisfied, and so Hk,α ∈ Hm,α.

3.1 Asymptotic results

In this section the main asymptotic result is presented in order to provide a

nonparametric analysis of the generalized eigenvalue problem. At this aim, two

random vectors dependent on the weight functions F ’s are defined as follows:

Ψk :=

∫ 1

0
Fk(x)W (x)dx√∫ 1

0

∫ 1

0
Fk(x)Fk(y)min{x, y}dxdy

,

Φk :=
Fk(1)W (1)− ∫ 1

0
fk(x)W (x)dx∫ 1

0
Fk(x)2dx

,

where fk is the derivative of Fk.

Moreover, we introduce the following p-variate standard normally distributed

random vectors:

Ψ∗k :=
(
RT

p−rC(1)C(1)T Rp−r

) 1
2
RT

p−rC(1)Ψk,

Φ∗k :=
(
RT

p−rC(1)C(1)T Rp−r

) 1
2
RT

p−rC(1)Φk,

Φ∗∗k := (RT
r D(1)D(1)T Rr)−

1
2 RT

r D(1)Φk,

and we construct the matrix Vr,m as

Vr,m := (RT
r D(1)D(1)T Rr)

1
2 V ∗

r,m(RT
r D(1)D(1)T Rr)

1
2 ,

with

V ∗
r,m =

( m∑

k=1

γ2
kΦ∗∗k Φ∗∗Tk

)
−

( m∑

k=1

γkΦ∗∗k Ψ∗Tk

)( m∑

k=1

Ψ∗kΨ∗Tk

)−1( m∑

k=1

γkΨ∗kΦ∗∗Tk

)
,

where

γk =

√∫ 1

0
F 2

k (x)dx
√∫ 1

0

∫ 1

0
Fk(x)Fk(y)min{x, y}dxdy

.
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The following result summarizes the eigenvalue problem and provide a nonpara-

metric solution for it.

3.3 Theorem Assume that Fk ∈ Fm, Gk,α ∈ Gm,α and Hk,α ∈ Hm,α.

If Assumptions 2.1, 2.2 and 2.3 are true, then:

(I) suppose that λ̂1,m ≥ . . . ≥ λ̂p,m are the ordered solutions of the generalized

eigenvalue problem

det
[
Am − λ(Bm + n−2A−1

m )
]

= 0, (31)

and λ1,m ≥ . . . ≥ λp−r,m the ordered solutions of

det
[ m∑

k=1

Ψ∗kΨ∗Tk − λ

m∑

k=1

Φ∗kΦ∗Tk

]
= 0. (32)

Then we have the following convergence in distribution

(λ̂1,m, . . . , λ̂p,m) → (λ1,m, . . . , λp−r,m, 0, . . . , 0);

(II) let us consider λ∗1,m ≥ . . . ≥ λ∗r,m the ordered solutions of the generalized

eigenvalue problem

det
[
V ∗

r,m − λ(RT
r D(1)D(1)T Rr)−1

]
= 0. (33)

Then the following convergence in distribution holds

n2(λ̂p−r+1,m, . . . , λ̂p,m) → (λ∗21,m, . . . , λ∗2r,m).

Proof. Due to Lemmas 1, 2 and 4 (Bierens, 1997), it is sufficient to study the

asymptotic behavior of
√

nMnonst
n and nMst

n .

We have

lim
n→+∞

√
nMnonst

n = lim
n→+∞

1√
n

n∑
t=1

Fk(t/n)∆d−1Yt+

+ lim
n→+∞

∫ d−1/2

−∞

[√
nφ1(n, α)

n∑
t=1

Gk,α(t/n)∆αYt

]
dα =: L1 + L2

By Bierens (1997), we have to show that L2 = 0.

Since Gk,α ∈ Gm,α, then the existence of the function θ1 (Definition 3.1-(i))
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guarantees, that the Lebesgue Theorem on the dominate convergence holds.

Therefore we can write

L2 =
∫ d−1/2

−∞
lim

n→+∞

[√
nφ1(n, α)

n∑
t=1

Gk,α(t/n)∆αYt

]
dα.

Hence, the fractional lag-difference process ∆αYt is well defined. Definition ??-

(ii) assures that L2 = 0, and the first part of the proof is complete.

Now,

lim
n→+∞

nMst
n = lim

n→+∞

n∑
t=1

Fk(t/n)∆dYt+

+ lim
n→+∞

∫ +∞

d−1/2

[
nφ2(n, α)

n∑
t=1

Hk,α(t/n)∆αYt

]
dα =: L3 + L4.

By Lemmas 1, 2 and 4 (Bierens, 1997), we need L4 = 0.

Since Hk,α ∈ Hm,α, the existence of the function θ2 (Definition 3.1-(ii)) implies

that the hypotheses of the Lebesgue’s Theorem on the dominate convergence

are fulfilled. Thus we have

L4 =
∫ +∞

d−1/2

lim
n→+∞

[
nφ2(n, α)

n∑
t=1

Hk,α(t/n)∆αYt

]
dα.

The condition (ii) of the Definition 3.1 assures that L4 = 0.

The result is completely proved.

4 THE GENERALIZED EIGENVALUE PROB-

LEM: THE DISCRETE CASE

The analysis carried out in the previous section deals with all differences of the

fractional integrated process Yt. This generality is implied by the continuous

setting. However, to let this contribution be useful in computational economics

applications, a discretization of the continuous case is provided. Such a dis-

cretization involves the Mn’s described by (12) and (13), and it is made with

respect to the difference order, named α, of the process Yt. The discrete set of

rational numbers Q, that is infinite, countable and dense in R is used. The den-

sity property of Q in R permits to have a set of information not too restrictive,
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maintaining the model in line with the general features of the continuous case.

Fix k = 1, . . . ,m, where m ∈ N. Let us consider Fk as in (7), and

G̃k,α : [0, 1] → R, α ∈ (−∞, d− 1/2);

H̃k,α : [0, 1] → R, α ∈ (d− 1/2, d + 1/2).

Moreover, we define two sequences:

{ζ1(n, α)} ⊆ R, α ∈ (−∞, d− 1/2);

{ζ2(n, α)} ⊆ R, α ∈ (d− 1/2, d + 1/2).

The terms Mn’s defined in (12) and (13) can be rewritten as

Mnonst
n =

1
n

n∑
t=1

Fk(t/n)∆d−1Yt +
+∞∑

j=1

[
ζ1(n, α1,j)

n∑
t=1

G̃k,α1,j (t/n)∆α1,j Yt

]
,

(34)

and

Mst
n =

1
n

n∑
t=1

Fk(t/n)∆dYt +
+∞∑

j=1

[
ζ2(n, α2,j)

n∑
t=1

H̃k,α2,j (t/n)∆α2,j Yt

]
, (35)

where

{α1,j}j∈N ≡ Q ∩ (−∞, d− 1/2)

and

{α2,j}j∈N ≡ Q ∩ (d− 1/2, d + 1/2).

Theorem 3.3 is translated in the discrete case.

Theorem 4.1 Assume that Fk ∈ Fm, G̃k,αj ∈ Gm,αj and H̃k,αj ∈ Hm,αj and

Assumptions 2.1, 2.2 and 2.3 are true. Then the thesis of Theorem 3.3 holds.

Proof. By the proof of Theorem 3.3, we have just to prove that

L̃2 := lim
n→+∞

+∞∑

j=1

[√
nζ1(n, α1,j)

n∑
t=1

G̃k,α1,j (t/n)∆α1,j Yt

]
= 0, (36)

and

L̃4 := lim
n→+∞

+∞∑

j=1

[
nζ2(n, α2,j)

n∑
t=1

H̃k,α2,j (t/n)∆α2,j Yt

]
= 0. (37)
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By using Definition 3.1-(i), we have that

L̃2 =
+∞∑

j=1

lim
n→+∞

[√
nζ1(n, α1,j)

n∑
t=1

G̃k,α1,j (t/n)∆α1,j Yt

]
.

Therefore, by the fact that ∆α1,j Yt is independent on n, (ii) of Definition 3.1

implies that L2 = 0.

Analogously, by using the conditions (iii) and (iv) in Definition 3.1, it is easy to

show that (37) holds.

The proposition is completely proved.

The discrete case takes into account a countable, and infinite, number of dif-

ferences of the process Yt. Johansen (2005) proposes a fractional VAR model

based on the d-th and 0-th differences of the data generating process. He ana-

lyzes the cofractionality of Yt by using the reparametrization ∆dYt. In section 5

we present a VAR model to study the cofractional cointegration of ∆dYt under

some conditions on α. This model is based on a wider range of difference orders

of Yt than the Johansen’s one.

5 A MODEL FOR NONPARAMETRIC FRAC-

TIONAL COINTEGRATION ANALYSIS

In this section we propose a model for fractional integrated processes, in order to

provide a natural field of application of the nonparametric cointegration theory

developed in the previous sections.

Given α ∈ (−1/2, 1/2), we consider the V ARd+α,bα(k) model in (d + α)-th

difference of the process Yt:

∆d+αYt = (1−∆bα)ψξT ∆d+α−bαYt +
k∑

i=1

Γi∆d+α(1−∆bα)iYt + εt, (38)

where εt is i.i.d. in p-dimension with zero mean and finite variance Σ, ψ and

ξ are p × r matrices, with r < p and bα > 0 is the reduction in the order of

integration. The concept of cointegration lies in the following definition.
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Definition 5.1 If Yt ∼ I(d), with d > −1/2, and there exists a linear combi-

nation ξ 6= 0 such that ξT Yt ∼ I(d− b), for 0 < b ≤ |d|, then Yt is cofractional

with cofraction vector ξ.

ξ contains the r cointegrating vectors, quoted in Theorem 3.3. Therefore ξ is

independent on the data generating process, and this fact justifies the nonpara-

metric approach used for V ARd+α,bα(k) in formula (40).

The model proposed in (40) is more general than the fractional V AR analyzed

in the previous related literature. Johansen (2005) assume that α = 0. In this

way he works with the d-th difference of the process Yt, that is an integrated

process of order 0, independently on the value of d. In this particular case, the

reduction in the order of integration b varies in a range independent on d. In

our model α can be different from 0, and the reduction in the order of integra-

tion varies in a range dependent on α. Moreover, the definition of cofractional

process in Definition 5.1 is more general than the one of Johansen (2005) and

reported by several authors (see, as an example, Franchi (2007)). These authors

assume that 0 < b ≤ d, working only on nonnegative integration orders d ≥ 0.

Our definition permits to consider processes with negative fractional order (re-

stricted on (-1/2,0)), and falls in Johansen’s definition for d > 0. Definition 5.1

allows for the following distinction for cofractional processes.

Assume that ∆αYt is cofractional with cofraction vector ξ. Then

• If ∆αYt ∼ I(d − α) is stationary, then also ξ∆αYt is stationary of order

less than d− α.

• ∆αYt ∼ I(d− α) is nonstationary and ξ∆αYt is stationary.

• ∆αYt ∼ I(d− α) is nonstationary and ξ∆αYt is nonstationary of order in

(1/2, d− α).

In the following result some conditions on the parameters α and bα are provided,

to summarize the previous distinction.

Proposition 5.1 Assume that ∆αYt is cofractional with cofraction vector ξ. If

max{0, d−α− 1/2} < bα < d−α + 1/2, then ∆αYt and ξT ∆αYt are stationary
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integrated processes.

Proof. Since Yt ∼ I(d), then ∆αYt ∼ I(d−α) and, if ∆αYt is cofractional with

cofraction vector ξ, then ξT ∆αYt ∼ I(d−α− bα). Under the stated hypotheses

on α and bα, we have

−1/2 < d− α− bα < 1/2,

and the result is proved.

We provide some illustrative examples showing the sense of Proposition 5.1.

Example 5.1 We consider Yt ∼ I(1/3). Let us work with the α-th difference

of Yt by choosing α = 1/6. Then ∆αYt ∼ I(1/6), and it is a stationary process.

Then, for bα = 1/6, we have ξT ∆αYt ∼ I(0).

Example 5.2 Assume Yt ∼ I(8/9). For α = 1/9, ∆αYt ∼ I(7/9) and it is

nonstationary.

• If bα = 5/9, we have ξT ∆αYt ∼ I(2/9), and it is stationary.

• If bα = 1/9, we have ξT ∆αYt ∼ I(2/3), and it is nonstationary.

The model proposed in (40) allows the estimate of the cointegration vectors

of the process α-th difference of Yt. Let us define Zt = ∆αYt. By introducing the

random matrices Am and Bm as in (8) and (9) for the process Zt, then Theorem

guarantees that such estimate is attained in a nonparametric framework.

6 CONCLUDING REMARKS

In this paper a nonparametric cointegration approach for fractional I(d) process

is proposed. In order to solve the generalized eigenvalues problem, two random

matrices, taking into account the stationary and nonstationary part of the data

generating process, are constructed. The solution of the problem is provided by

assuming that the difference orders of Yt vary in a continuous and discrete sets.

The best feature of the continuous framework lies in its generality. The discrete

case is proposed to let this contribution be useful in economics applications.

25



References

Anderson, S.A., H.K. Brons & S.T Jensen (1983) Distribution of eigenvalues in

multivariate statistical analysis. Annals of Statistics 11, 392-415.

Bierens, H. J. (1997) Nonparametric co-integration analysis. Journal of Econo-

metrics 77, 379-404.

Breitung, J. & Hussler, U. (2002) Inference on the cointegration rank in frac-

tionally integrated process. Journal of Econometrics 110, 167-185.

Davidson, J. (2002) A model of fractional cointegration,and tests for cointegra-

tion using the bootstrap. Journal of Econometrics 110, 187-212.

Engle, R.F. & Grange, C.W.J (1987) Cointegration and error correction: rep-

resentation, estimation and testing. Econometrica 55, 251-276.

Franchi, M. (2007) A characterization of the polynomial cofractionality in the

V ARd,b(k) model. Paper presented to the Second Italian Congress of Econo-

metrics and Empirical Economics, CIDE, Rimini.

Granger, C. W. J. (1981) Some properties of time series data and their use in

econometric model specification. Journal of Econometrics 16, 121-30.

Jegahatan, P. (1999) On asymptotic inference in cointegrated time series with

fractionally integrated errors. Econometric Theory 15, 583-621.

Johansen, S. (2005) A representation theory for a class of vector autoregressive

models for fractional processes. University of Copenhagen, Preprint Nr. 10.

Nielsen, M. Ø. (2004) Optimal Residual-Based Tests for Fractional Cointegra-

tion and Exchange Rate Dynamics. Journal of Business & Economic Statistics

22, 331-345.

Marmol, F. & Velasco, C. (2004) Consistent testing of cointegrating relationship.

Econometrica 72, 1809-1844

Marmol, F., Escribano, A. & Aparicio, F.M. (2002). Instrumental variable

interpretation of cointegration with inference results for fractional cointegration

Econometric Theory 18, 646-672.

Kim, C.S. & Phillips, P.C.B. (2001) Fully Modified Estimation of Fractional

Cointegration Models, submitted.

26



Robinson, P.M. & Yajima, Y. (2002) Determination of cointegrating rank in

fractional system. Journal of Econometrics 106, 217-241.

Robinson, P.M. (2003) Time Series With Long Memory, Oxford University

Press.

27



 

 

Working Papers available: 

n. 31/03 S. DE NARDIS    
C. VICARELLI 

The Impact of Euro on Trade: the (Early) Effect 
Is not So Large  

n. 32/03 S. LEPROUX L'inchiesta ISAE-UE presso le imprese del 
commercio al minuto tradizionale e della 
grande distribuzione: la revisione dell'impianto 
metodologico 

n. 33/03 G. BRUNO  
C. LUPI  

Forecasting Euro-area Industrial Production 
Using (Mostly)\ Business Surveys Data 

n. 34/03 C. DE LUCIA Wage Setters, Central Bank Conservatism and 
Economic Performance 

n. 35/03 E. D'ELIA 
B. M. MARTELLI 

Estimation of Households Income from 
Bracketed Income Survey Data 

n. 36/03 G. PRINCIPE Soglie dimensionali e regolazione del rapporto 
di lavoro in Italia 

n. 37/03 M. BOVI  A Nonparametric Analysis of the International 
Business Cycles 

n. 38/03 S. DE NARDIS 
M. MANCINI 
C. PAPPALARDO 

Regolazione del mercato del lavoro e crescita 
dimensionale delle imprese: una verifica 
sull'effetto soglia dei 15 dipendenti 

n. 39/03 C. MILANA 
ALESSANDRO ZELI 

Productivity Slowdown and the Role of the Ict 
in Italy: a Firm-level Analysis 

n. 40/04 R. BASILE 
S. DE NARDIS  

Non linearità e dinamica della dimensione 
d'impresa in Italia 

n. 41/04 G. BRUNO  
E. OTRANTO 

Dating the Italian Business Cycle: a 
Comparison of Procedures 

n. 42/04 C. PAPPALARDO 
G. PIRAS 

Vector-auto-regression Approach to Forecast 
Italian Imports 

n. 43/04 R. DE SANTIS Has Trade Structure Any Importance in the 
Transmission of Currency Shocks? An 
Empirical Application for Central and Eastern 
European Acceding Countries to EU  

n. 44/04 L. DE BENEDICTIS  
C. VICARELLI 

Trade Potentials in Gravity Panel Data Models 



 

Working Papers available: 

n. 45/04 S. DE NARDIS   
C. PENSA 

How Intense Is Competition in International 
Markets of Traditional Goods? The Case of 
Italian Exporters 

n. 46/04 M. BOVI  The Dark, and Independent, Side of Italy 

n. 47/05 M. MALGARINI 
P. MARGANI 
B.M. MARTELLI 

Re-engineering the ISAE manufacturing survey 

n. 48/05 R. BASILE 
A. GIUNTA  

Things change. Foreign market penetration 
and firms’ behaviour in industrial districts: an 
empirical analysis 

n. 49/05 C. CICCONI Building smooth indicators nearly free of end-
of-sample revisions 

n. 50/05 T. CESARONI 
M. MALGARINI 
G. ROCCHETTI 

L’inchiesta ISAE sugli investimenti delle 
imprese manifatturiere ed estrattive: aspetti 
metodologici e risultati 

n. 51/05 G. ARBIA 
G. PIRAS 

Convergence in per-capita GDP across 
European regions using panel data models 
extended to spatial autocorrelation effects 

n. 52/05 L. DE BENEDICTIS 
R. DE SANTIS 
C. VICARELLI 

Hub-and-Spoke or else? Free trade 
agreements in the “enlarged” European Union 

n. 53/05 R. BASILE 
M. COSTANTINI 
S. DESTEFANIS 

Unit root and cointegration tests for cross-
sectionally correlated panels. 
Estimating regional production functions 

n. 54/05 C. DE LUCIA 
M. MEACCI 

Does job security matter for consumption? 
An analysis on Italian microdata 

n. 55/05 G. ARBIA 
R. BASILE 
G. PIRAS 

Using Spatial Panel Data in Modelling Regional 
Growth and Convergence 

n. 56/05 E. D’ELIA Using the results of qualitative surveys in 
quantitative analysis 

n. 57/05 D. ANTONUCCI 
A. GIRARDI 

Structural changes and deviations from the 
PPP within the Euro Area 



 

Working Papers available: 

n. 58/05 M. MALGARINI 
P. MARGANI 

Psychology, consumer sentiment and 
household expenditures: a disaggregated 
analysis 

n. 59/05 P. MARGANI 
R. RICCIUTI 

Equivalenza Ricardiana in economia aperta:  
un’analisi dinamica su dati panel 

n. 60/05 M. BOSCHI 
A. GIRARDI 

Euro Area inflation: long-run determinants and 
short-run dynamics 

n. 61/05 M. BOVI Book-Tax Gap. An Income Horse Race 

n. 62/06 M. BOVI The Cyclical Behavior of Shadow and Regular 
Employment 

n. 63/06 G. BRUNO 
C. LUPI 
C. PAPPALARDO 
G. PIRAS 

The cross-country effects of EU holidays on 
domestic GDP’s 

n. 64/06 M. COZZOLINO 
F. DI NICOLA 
M. RAITANO 

Il futuro dei fondi pensione: opportunità e 
scelte sulla destinazione del TFR 

n. 65/06 S. LEPROUX 
M. MALGARINI 

Clima di fiducia e spesa delle famiglie in Italia: 
un’analisi disaggregata secondo il reddito degli 
intervistati 

n. 66/06 M. BOVI Consumers Sentiment and Cognitive 
Macroeconometrics Paradoxes and 
Explanations 

n. 67/06 G. ROCCHETTI Modelli di business nel mercato del software e 
partecipazione delle imprese italiane al 
fenomeno open source 

n. 68/06 L. CROSILLA La stagionalità delle inchieste ISAE su imprese 
e consumatori: aspetti metodologici ed 
evidenza empirica 

n. 69/06 C. OLDANI Money demand & futures 

n. 70/06 R. BASILE 
S. DE NARDIS 
A. GIRARDI 

Pricing to market of italian exporting firms 

   



 

Working Papers available: 

n. 71/06 B.M. MARTELLI 
G. ROCCHETTII 

The ISAE Market Services Survey: 
Methodological Upgrading, Survey Reliability 

n. 72/06 M. FIORAMANTI Predicting sovereign debt crises using artificial 
neural networks: a comparative approach 

n. 73/06 S. ZECCHINI 
M. VENTURA 

Public Credit Guarantees and SME Finance 

n. 74/06 G. FERRI 
M. VENTURA 

Macchinari del made in Italy e dinamiche 
dei distretti industriali 

n. 75/07 R. BASILE Intra-distribution dynamics of regional 
per-capita income in Europe: evidence from 
alternative conditional density estimators 

n. 76/07 M. BOVI National Accounts, Fiscal Rules and Fiscal 
Policy Mind the Hidden Gaps 

n. 77/07 L. CROSILLA 
S. LEPROUX 

Leading indicators on construction and retail 
trade sectors based on ISAE survey data 

 

 
 




