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ABSTRACT 

This paper compares different conditional density estimators to analyze 
the cross-sectional distribution dynamics of regional per-capita incomes in 
Europe during the period 1980-2002. First, a kernel estimator with fixed 
bandwidth gives evidence of convergence. With a modified estimator with 
variable bandwidth and mean-bias correction, the dominant income dynamics is 
that of persistence and lack of cohesion: only a fraction of very poor regions 
improves its position over time converging towards a low relative income. An 
alternative graphical technique (more informative than the traditional contour 
plot) is also proposed to visualize conditional densities. Finally, a first-order 
spatial autoregressive model is applied to estimate the effect of spatial 
dependence on the evolution of income distribution. 

Keywords: Intra-distribution dynamics, Conditional density estimators,  
Convergence, European regions, Spatial dependence 

JEL Classification: R11, C14, C21. 



 

NON-TECHNICAL SUMMARY 

Danny Quah has proposed a very appealing approach to measure 
economic convergence. This method, known as the intra-distribution dynamics 
approach and now widely applied in the literature, consists of examining the 
dynamics of the entire income distribution by using nonparametric stochastic 
kernel estimators of conditional density and visualizing the results through 
perspective and contour plots. However, it has been demonstrated that the 
mean function of the kernel density estimator is equivalent to the Nadaraya-
Watson kernel smoother. Because of the undesirable bias properties of this 
smoother, modified conditional density estimators have been recently proposed 
by statisticians.  

This paper compares these alternative conditional density estimators to 
describe the law of motion of cross-regional distributions of per-capita incomes 
in Europe during the period 1980-2002. First, a kernel estimator with fixed 
bandwidth gives evidence of convergence. With a modified estimator with 
variable bandwidth and mean-bias correction, the dominant income dynamics is 
that of persistence and lack of cohesion: only a fraction of very poor regions 
improves its position over time converging towards a low relative income. An 
alternative graphical technique (more informative than the traditional contour 
plot) is also proposed to visualize conditional densities. Finally, a first-order 
spatial autoregressive model is applied to estimate the effect of spatial 
dependence on the evolution of income distribution. 



 

DINAMICA INTRA-DISTRIBUZIONALE DEI REDDITI PRO 
CAPITE DELLE REGIONI EUROPEE: RISULTATI DI STIME 
ALTERNATIVE DI DENSITA’ CONDIZIONATA 

SINTESI 

Questo lavoro confronta i risultati di differenti stime di densità condizionata 
al fine di analizzare la dinamica intra-distribuzionale dei redditi pro capite delle 
regioni europee nel periodo 1980-2002. Innanzitutto, l’uso di uno stimatore 
kernel con bandwidth fisso fornisce qualche evidenza di convergenza. 
Attraverso uno stimatore kernel modificato con bandwidth variabile e correzione 
della distorsione media, si ottiene maggiore evidenza di persistenza e di 
mancanza di coesione: solo una frazione di regioni molto povere mostra un 
miglioramento della propria posizione relativa nel tempo ed una convergenza 
locale verso un livelli di reddito molto basso. Il lavoro propone inoltre l’uso di 
una tecnica grafica alternativa al tradizionale contour plot per visualizzare le 
densità condizionate. Infine, viene applicato un modello auto-regressivo 
spaziale del primo ordine per stimare l’effetto della dipendenza spaziale sulla 
dinamica della distribuzione dei redditi regionali. 

Parole chiave: Dinamica Intra-distribuzionale, Stime di densità condizionata, 
Convergenza, Regioni europee, Dipendenza spaziale 

Classificazione JEL: R11, C14, C21. 
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1 INTRODUCTION 

The interest in regional convergence has been growing intensively in the 
last decade. The most widely accepted method of testing the convergence 
hypothesis is the regression approach, known as the β-convergence approach. 
This method has been discussed from different points of view (see Durlauf et 
al., 2005, for a review of the literature on economic convergence; and Magrini, 
2004, for a survey focusing on regional convergence studies). One of the critical 
points is that this approach tends to concentrate on the behavior of the 
representative economy. In particular, it sheds light on the transition of this 
economy towards its own steady state, but provides no insight on the dynamics 
of the whole cross-sectional distribution of regional per-capita incomes. In fact, 
a negative association between the growth rates and the initial conditions can 
be associated with a rising, a declining and a stationary cross-section income 
dispersion. Clearly, a method that cannot differentiate between convergence, 
divergence and stationarity is of limited or no use. This failure is essentially a 
simple intuition of what is termed Galton’s fallacy (Quah, 1993). 

To overcome this problem, the combination of the β-convergence 
approach with the analysis of the evolution of the un-weighted cross-sectional 
standard deviation of the logarithm of per-capita income has been proposed. A 
reduction over time of this measure of dispersion is referred to as σ-
convergence. However, concentrating on the concept of σ-convergence does 
not represent an effective solution: analyzing the change of cross-sectional 
dispersion in per-capita income levels does not provide any information on the 
intra-distribution dynamics. Moreover, a constant standard deviation is 
consistent with very different dynamics ranging from criss-crossing and leap-
fogging to persistent inequality. Distinguishing between these dynamics is, 
however, of essential importance. 

More recently, moving from this picture, an alternative approach to the 
analysis of convergence has been suggested in order to solve such a problem. 
This method, known as the intra-distribution dynamics approach (Quah, 1996a, 
Quah 1996b, Quah 1996c, Quah 1997), examines directly how the whole 
income distribution changes over time and, thus, appears to be more 
informative than the convergence empirics developed within the regression 
paradigm.  

The intra-distribution dynamics was generally analyzed through the 
application of Markov chain methodologies (Quah, 1996b; López-Bazo et al., 
1999; Fingleton, 1997, 1999; Bulli, 2001) or, more recently, through the 
estimation of conditional densities using stochastic kernel estimators (Quah, 
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1997; Lamo, 2000; Pittau and Zelli, 2006; Magrini, 2004). All of the studies that 
make use of non-parametric stochastic kernel estimators provide contour plots 
of the conditional density to describe the law of motion of cross-sectional 
distributions. In this way, they treat the conditional density function as a 
bivariate density function, while it has been noticed that the conditional density 
function is a sequence of univariate functions. Furthermore, these studies 
scantly take account of the recent development in the statistical literature on 
conditional density estimation (Hyndman et al., 1996; Fan et al., 1996; Hall et 
al., 1999; Hyndman and Yao, 2002), which highlighted the strong bias problems 
associated with the widely used standard kernel estimator and has proposed 
new estimators with better statistical properties.  

The aim of this paper is to explore alternative conditional density 
estimators and alternative graphical methods, both developed by Hyndman et 
al. (1996), to describe the law of motion of cross-regional distributions of per-
capita incomes in Europe. In particular, Hyndman et al. (1996) notice that the 
mean function of the kernel density estimator is equivalent to the Nadaraya-
Watson kernel smoother. Because of the undesirable bias properties of this 
smoother, they propose a modified conditional density estimator with a mean 
equivalent to some other nonparametric regression smoothers that have better 
statistical properties in terms of mean-bias. This new estimator has smaller 
integrated mean square error than the standard kernel estimator.  

The layout of the paper is the following. In Section 2, we review the most 
recent literature on the intra-distribution dynamics approach and on conditional 
density estimators. In Section 3, we report the estimation results obtained 
applying different estimators to data on per-capita GDP of European regions 
over the period 1980-2002. In Section 4 we examine the role of spatial 
dependence in affecting the cross-section distribution dynamics of per-capita 
GDP. Section 5 concludes and indicates some further possible developments. 
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2 INTRA-DISTRIBUTION DYNAMICS AND DENSITY 
ESTIMATORS 

2.1 The transition dynamics approach 

As pointed out in the introduction, many problems have been identified 
with respect to the regression approach to economic convergence and these 
drawbacks have pushed researchers to explore alternative methods. In 
particular, Quah (1993, 1996a, 1996b, 1996c, 1997) has suggested an 
interesting approach to the analysis of economic convergence based on the 
concept of transition dynamics. In a nutshell, this method consists of studying 
the dynamics of the entire distribution of the level of per-capita income of a set 
of economies. We will now review the basic ideas.  

As a first step of the methodology, Quah (1993) suggests the development 
of a probability model describing how a given economy (a region or a country) 
observed in a given class of the income distribution at time t moves to another 
class of the income distribution in a subsequent moment of time t+1. Let 
assume the existence of h different income classes and T time periods and 
define Ft as the time invariant distribution of regional per-capita incomes at time 
t with φt the associated probability measure. The dynamics of φt can be modeled 
as a first-order auto-regressive process:  

 '
1+ =t tφ φM  (1) 

The matrix M is usually defined as the transition probability of a Markovian 
process. Each element of M describes the probability that an economy 
belonging to class i at time t will move to class j in the next period. Iterations of 
(1) yield a predictor for future cross-section distributions 

 
'

+ =t t
τ

τφ φM  (2) 

since 'τM  contains information about probability of moving between any two 
income classes in exactly τ periods of time.  

Lòpez-Bazo et al. (1999) provide an example of application of the Markov 
chain approach to the case of European regions. However, even if intuitively 
appealing, this approach is not free of criticisms. In fact, it is worth noticing that 
the findings reached through the Markov chain methodology may be sensitive to 
the criterion used to define the transition probability matrix. Although some 
procedures have been suggested to determining the optimum number of states 
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and boundaries between them (Magrini, 1999; Bulli, 2001), usually the 
researchers decide arbitrarily. One way to solve this problem is to allow the 
number of cells of the Markov transition probability matrix to tend to infinity 
(Quah, 1997). If the process describing the evolution of the distribution is again 
assumed to be time-invariant and first-order Markov, than the relationship 
between the distribution at time t+τ and t can be written as 

 ( ) ( ) ( )
0

|t ty f y x x dxτ τφ φ
∞

+ = ∫  (3) 

where ( )|f y xτ  is the probability density function of y (the per-capita income 

levels at time t+τ) conditional upon x (the per-capita income levels at time t). In 

other words, the conditional density ( )|f y xτ  describes the probability that a 

given region moves to a certain state of relative income (richer or poorer) given 
that it has a certain relative income level in the initial period. In this case 
convergence must be studied by visualizing and interpreting the shape of the 
income distribution at time t+τ over the range of incomes observed at time t.  

The long run limit of the distribution of incomes across regions is the limit 
of (3) as τ tends to infinity. The resulting ergodic distribution is1: 

 ( ) ( ) ( )
0

|
∞

∞ ∞= ∫y f y x x dxτφ φ  (4) 

This function describes the long term behavior of the income distribution. 
Quah (2001) has, however, highlighted the imprecision in the estimates of the 
ergodic distribution and has recommended that this distribution should not be 
read as forecast of what will happen in the future.  

2.2 The kernel conditional density estimator 

Operationally, the transition dynamics approach consists of estimating and 
visualizing the conditional density of Y given X, where Y is the regional per-
capita income at time t+τ and X the regional per-capita income at time t. Denote 

the sample by ( ) ( ){ }1 1, ,..., ,n nX Y X Y  and the observations by 

                                                  
1  See Johnson PA. 2004. A continuous state space approach to “convergence by parts”. Department of 

Economics, Vassar College, Poughkeepsie, NY. 
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( ) ( ){ }1 1, ,..., ,n nx y x y ; thus, the aim of the researcher is to estimate the density 

of Y conditional on X=x. Let ( ),g x yτ  be the joint density of (X,Y), ( )h xτ  the 

marginal density of X and ( ) ( ) ( )| ,f y x g x y h xτ τ τ=  the conditional density of 

Y|(X=x). The most obvious estimator of the conditional density is the kernel 
estimator, firstly proposed by Rosenblatt (1969). Recently, Hyndman et al. 
(1996) have further explored its properties. They define:  

 ( ) ( )
( )

ˆ ,ˆ | ˆ
g x y

f y x
h x
τ

τ
τ

=  (5) 

where 

( )
1

1ˆ ,
n ii yx

i

y Yx X
g x y K

nab a bτ
=

 −  − 
=       

∑  

is the estimated joint density of (X,Y) and  

( )
1

1ˆ
n

i x

i

x X
h x K

na aτ
=

 − 
=   

 
∑  

is the estimated marginal density2.  
Equation (5) can also be written as: 

 ( ) ( )
1

1ˆ |
n i y

i
i

y Y
f y x w x K

b bτ
=

 − 
=   

 
∑   (6) 

where 

( )
1

n
ji x x

i
j

x Xx X
w x K K

a a=

 − − 
 =       

∑  

Equation (6) suggests that the conditional density estimate at X=x can be 
obtained by summing the n kernel functions in the Y-space, weighted by 

( ){ }iw x  in the X-space. In other words, equation (6) can be interpreted as the 

                                                  
2 .

x  and .
y  are Euclidean distance metrics on the spaces of X and Y respectively. K(.) is a 

symmetric density function, known as the kernel function. Usually, the Epanechnikof kernel is used. 
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Nadaraya-Watson kernel regression (or locally weighted averaging) of 

i y
y Y

K
b

 − 
  
 

 on Xi (see Hyndman and Yao, 2002). This estimator has two 

desirable properties: (i) it is always non-negative and (ii) integrals of the 
estimators with respect to y equal 1.  

The two parameters a and b control the smoothness between conditional 
densities in the x direction (the smoothing parameter for the regression) and the 
smoothness of each conditional density in the y direction, respectively.3 As 
usual, small bandwidths produce small bias and large variance whereas large 
bandwidths give large bias and small variance. The optimal bandwidths might 
be derived by differentiating the integrated mean square error function (IMSE) 
with respect to a and b and setting the derivatives to zero (Bashtannyk and 
Hyndman, 2001). However, this requires additional assumptions on the 
functional forms of both the marginal and the conditional densities. As a rule of 
thumb, it can be assumed that these densities are Gaussian or of some other 
parametric form.  

The bandwidth a can either be fixed or it can vary as a function of the focal 
point x. When the data are not homogenously distributed over all the sample 
space (that is when there are regions of sparse data), a variable (or nearest-
neighbor) bandwidth is recommended. In this case, we adjust a(X) so that a 
fixed number of observations m is included in the window. The fraction m/n is 
called the span of the kernel smoother.  

2.3 A kernel conditional density estimator with mean-bias 
correction 

Hyndman et al. (1996) have observed that the estimation of the conditional 
mean function obtained from the kernel density estimator (Equation 6) is 
equivalent to the Nadaraya-Watson kernel regression function:  

 ( ) ( ) ( )
1

ˆˆ |
=

= = ∑∫
n

i i
i

m x yf y x dy w x Yτ  (7) 

As is well known, the Nadaraya-Watson smoother can present a large bias 
both on the boundary of the predictor space, due to the asymmetry of the kernel 

                                                  
3 It is worth noting that in the original Rosenblatt's estimator a=b. 
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neighbourhood, and in its interior, if the true mean function has substantial 
curvature or if the design points are very irregularly spaced.  

Given the undesirable bias properties of the kernel smoother, Hyndman et 
al. (1996) proposed an alternative conditional density estimator with a mean 
function equivalent to that of other nonparametric regression smoothers having 
better properties than the Nadaraya-Watson approach.  

The new class of conditional density estimators can be defined as 

 ( ) ( )
( )*

*

1

1ˆ |
n i y

i
i

y Y x
f y x w x K

b bτ
=

 −
 =
 
 

∑  (8) 

where ( ) ( ) ( )* ˆˆi iY x e r x l x= + − , ( )r̂ x  is an estimator of the conditional 

mean function ( ) [ ]|r x E Y X x= = , ( )ˆ= −i i ie Y r x  and ( )l̂ x  is the mean of the 

estimated conditional density of ( )| =e X x . 

Since the error term ( ie ) has the same distribution of iy  except for a shift 
in the conditional mean, one may start by applying the standard kernel density 

estimator to the points { },i ix e  and, then, adding the values of ( )r̂ x  to the 

estimated conditional densities ( )*ˆ |f e xτ  in order to obtain an estimate of the 

conditional density of Y|(X=x). Since ( )l̂ x  - the mean function of ( )*ˆ |f e xτ  - is 

constant under certain conditions (homoskedastic and independent errors), the 

mean-bias of ( )*ˆ |f y xτ  is simply the bias of ( )r̂ x  and the integrated mean 

square error is reduced.  

Obviously, setting ( ) ( ) ( )
1

ˆ ˆ
n

i i
i

r x m x w x Y
=

= = ∑  (that is the Nadaraya-Watson 

smoother) implies that ( ) ( )*̂
ˆ| |f y x f y x= . However, ( )r x  can also be 

estimated by using many other smoothers having better properties than the 

kernel regression estimator, ( )m̂ x 4. In other words, using the method 

developed by Hyndman et al. (1996), the mean function of ( )*ˆ |f y xτ  is allowed 

to be equal to a smoother with better bias properties than the kernel regression. 
                                                  
4  Using ( )r̂ x  we often introduce an extra smoothing parameter, c. Notice that both c and a control 

smoothness in the x direction; a controls how quickly the conditional densities can change in shape 
and spread while c controls the smoothness of the mean of the conditional densities over x. 
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In this way, we obtain an estimate of the conditional density with a mean-bias 
lower than that of the kernel estimator.  

2.4  Local linear conditional density estimators 

Recently, alternative solutions to the excessive bias problem of the kernel 
density estimator have been suggested. For example, Fan et al. (1996) have 
proposed a local linear density estimator. Let 

 ( ) ( )
2

0 1 0 1
1

, ; ,
n

i iy x
i

i

y Y x X
R x y K X x K

b a
β β β β

=

  −   −  = − − −            
∑  (9), 

then ( ) 0
ˆ |f y x = β  is a local linear estimator, where ( )0 1

ˆ ˆ ˆ,β = β β  is that value of 

β  which minimizes ( )0 1, ; ,R x yβ β . When 1̂β =0, this estimator is identical to (6). 

While this estimator has smaller bias than the Nadaraya-Watson estimator, it is 
not restricted to be non-negative. In order to solve this problem, Hyndman and 
Yao (2002) proposed an alternative estimation method, called the local 
parametric estimator, which is similar to the local logistic estimator proposed by 
Hall et al. (1999) and is a conditional version of the density estimator proposed 
by Loader (1996). It is simply defined as:  

 ( ) ( )( )
2

1 0 1 0 1
1

, ; , exp
=

  −   −  = − − −            
∑
n

i iy x
i

i

y Y x X
R x y K X x K

b a
β β β β  (10). 

This is equivalent to using local likelihood estimation for the regression of 

i y
y Y

K
b

 − 
  
 

 on Xi. This local linear density estimator can also be combined 

with the mean-bias-correction method described in section 2.3 in order to force 
the density function to have a mean equal to any pre-specified smoother. We 
will exploit this opportunity in the empirical analysis presented below. 
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3 SOME EVIDENCE ON REGIONAL CONVERGENCE IN 
EUROPE 

3.1 Data, scatterplot smoothing and empirical strategy 

We analyze the intra-distribution dynamics of regional per-capita incomes 
in Europe over the period 1980-2002. Per-capita income levels are normalized 
with respect to the EU average in order to remove co-movements due to the 
European wide business cycle and trends in the average values. The income 
variable is the total gross value-added (GVA) calculated according to the 
European System of integrated Accounts (ESA95). The total GVA figures are at 
constant prices 1995 and are converted to Purchasing Power Standards (PPS). 
However, only national PPS have been applied, since Eurostat does not 
possess comparable regional price levels that would enable us to take into 
account regional differences in price levels. The number of NUTS2 regions 
included in the sample is 189 (see Appendix 1). Data are drawn from the 
Cambridge Econometrics Dataset.5  

In order to estimate conditional density functions ( )|f y xτ , evaluation at a 

large number of points is frequently required. For this reason, we fix τ = 15 and 
exploit the panel structure of the dataset. Thus, Y and X are vectors of 1,512 
observations (189 regions ×  8 periods). 

Figure 1 shows the scatterplot of relative per-capita income levels at time t 
and t+15. We can clearly observe three things: (1) data are distributed around 
the main diagonal, indicating a high degree of immobility; (2) at the extreme of 
the sample space data are sparser; (3) a few extreme observations appear on 
the right side of the scatterplot. These six points (included within a circle) refer 
to Groningen, a region often excluded from convergence analyses, since it 
always appears as an outlier.6 However, in spirit of the distribution dynamics 
approach described by Quah (1997, p. 34), we did not exclude regions from the 
                                                  
5  In alternative to the NUTS regions, some authors have used Functional Urban Regions (FURs) as units 

of analysis (Magrini, 1999) in order to take into account the spatial sphere of socio-economic influence 
of any basic unit. However, the main data sources (Eurostat and Cambridge Econometrics) only 
provide data at NUTS level. 

6  Groningen seems to have worsened its relative economic position in the second half of the eighties. 
However, the evolution of gas prices and changes in the way in which GDP in the energy sector was 
distributed between regions are well-kwon reasons for this feature. Thus, Groningen could not be 
considered as an economic outlier in strict sense and might be excluded from the analysis. However, in 
the present paper we decided to keep this region within the sample in order to show the potential 
effects of outliers on the estimate of conditional densities. 
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dataset just because they have “performed extraordinary well or extraordinary 
poorly relative to the bulk of other macroeconomies”. They represent real 
people and real regions not just observations that might be useful to delete in 
statistical analysis. Rather, a researcher must endeavour to find estimation 
methods robust against outliers.  

Fig. 1  Regional per-capita income in Europe: comparing different 
scatterplot smoothers 

 
Notes: the graph reports a scatterplot of relative per-capita income levels at time t and t+15. The estimated 
fits of three different scatterplot smoothers are superimposed: (a) the Nadaraya-Watson estimator (‘dotted’ 
curve); (b) the local linear regression smoother (‘long-dashed curve’) with variable bandwidth; and (c) the 
lowess (‘solid’ curve). 

 t 
In figure 1 we also superimpose the estimated fit of three different 

scatterplot smoothers: (a) the Nadaraya-Watson estimator (‘dotted’ curve) with 
a Gaussian kernel and a fixed bandwidth h=0.09; (b) the local linear regression 
smoother (‘long-dashed curve’) with a variable bandwidth (also known as the k-
nearest-neighbor local linear smoother); and (c) the lowess (‘solid’ curve).7 All 
bandwidth parameters have been selected by using the generalized cross 
                                                  
7  The lowess can be interpreted as a tri-cube kernel scatterplot smoother, able to capture local 

fluctuations in the density function of the independent variable (Cleveland, 1979; Cleveland and Devlin, 
1988). The combination of three features - nearest neighbours, smoothed weight function (the tricube 
kernel) and local expected value formed via locally weighted regressions - helps the lowess regression 
outperform many other scatterplot smoothers. In particular, a local linear smoother is, per se, not 
robust against outliers. Only, the lowess is very robust against ‘far out’ observations, since it down-
weights large residuals. 
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validation method. In the cases (b) and (c) the span that defines the size of the 
neighborhood in terms of a proportion of the sample size is equal to 0.2 (the 
width of the smoothing windows always contain the 20% of the data). 

As expected, the Nadaraya-Watson (or local averaging) smoother appears 
more sensitive than the other two smoothers to extreme observations 
(Groningen) and to the data sparseness at the boundary. Moreover, a 
difference between the local linear regression with variable bandwidth and the 
lowess emerges only at the extreme right side of the sample space, confirming 
that only the lowess is resistant against isolated points.  

In the rest of this section we report the results of different conditional 

density estimators. First, we estimate ( )15
ˆ |f y x  using a kernel estimator with a 

constant bandwidth parameter a (equation 6). In this first step we compare two 
alternative graphical techniques for visualizing the conditional density 
estimators: the traditional perspective and contour plots, on the one side, and 
the new ‘stacked’ and ‘HDR’ plots (described in section 3.2), on the other. Then, 
we estimate a conditional density using four alternative methods: (i) a kernel 
density estimator with variable bandwidth; (ii) a kernel density estimator with 
variable bandwidth and mean bias correction (equation 8); (iii) a local linear 
density estimator with variable bandwidth (equation 10); (i) a local linear density 
estimator with variable bandwidth and mean bias correction8.  

3.2 New graphical methods for visualizing intra-distribution 
dynamics 

All of the studies on intra-distribution dynamics which make use of 
nonparametric stochastic kernel density estimators provide three-dimensional 
perspective plots and/or the corresponding contour plots of the conditional 
density to describe the law of motion of cross-sectional distributions. In such a 
way, they treat the conditional density as a bivariate density function, while the 
latter must be interpreted as a sequence of univariate densities of relative per-
capita income levels conditional on certain initial levels.  

Here we use new graphical methods for visualizing conditional density 
estimators developed by Hyndman et al. (1996) and Hyndman (1996). The first 
graphical technique, called the “stacked conditional density plot” (figures 3A), 
displays a number of conditional densities plotted side by side in a perspective 

                                                  
8  All estimations were performed using the R software. In particular, we used the code hdrcde developed 

by Robert Hyndman and the code locfit. 
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plot9. It facilitates viewing the changes in the shape of the distributions of the 
variable observed at time t+τ  over the range of the same variable observed at 
time t. In other words, like a row of a transition matrix, each univariate density 
plot describes transitions over 15 years from a given income value in period t. 
Hyndman et al. (1996) note that this plot is “much more informative than the 
traditional displays of three dimensional functions since it highlights the 
conditioning” (p.13).  

The second type of plot proposed by Hyndman et al. (1996) is the “highest 
conditional density region” (HDR) plot (figures 3B-10). Each vertical band 
represents the projection on the xy plan of the conditional density of y on x. In 
each band the 25% (the darker-shaded region), 50%, 75% and 90% (the lighter-
shaded region) HDRs are reported. A high density region is the smallest region 
of the sample space containing a given probability. These regions allow a visual 
summary of the characteristics of a probability distribution function. In the case 
of unimodal distributions, the HDRs are exactly the usual probabilities around 
the mean value; however, in the case of multimodal distributions, the HDR 
displays different disjointed subregions.  

The HDR plot is particularly important to analyze intra-distribution 
dynamics. If the 45-degree diagonal crosses the 25% or the 50% HDRs, it 
means that most of the elements in the distribution remain where they started 
(there is ‘strong’ persistence); if it crosses only the 75% or the 90% HDRs, we 
can conclude in terms of ‘weak’ persistence. If the horizontal line traced at the 
zero-value of the period t+15 axis crosses all the 25-50% (75-90%) HDRs, we 
can say that there is ‘strong’ (‘weak’) global convergence towards equality. 
Finally, if some 25-50% (75-90%) HDRs are crossed by a horizontal line traced 
at any value of the t+15 axis, we can say that there is ‘strong’ (‘weak’) local or 
‘club convergence’.10 Clearly, this method is particularly informative for the 
analysis of regional growth behavior, since it highlights the dynamics of the 
entire cross-section distribution. It remains important to analyze any other 
moment of the distribution (such as the mean and the variance) and any other 
central point. In particular, one may wish to analyze the modes, the values of y 
where the density function takes on its maximum values. In fact, especially 
when the distribution function is bimodal, the mean and the median are not very 
useful, since they will provide only a ‘compromise’ value between the two 

                                                  
9  Each univariate density plot is always non-negative and integrates to unity. Since the conditional 

density plot has been evaluated on an equispaced grid of 100 values over the range of x and y 
directions, figure 3A displays 100 stacked univariate densities. 

10 The ‘club convergence hypothesis’ states that regions catch up with one another but only within 
particular subgroups. 
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peaks. Thus, the modes may be considered as a form of robust nonparametric 
regression. In each figure, the highest modes for each conditional density 
estimate are superimposed on the HDR plots and shown as a bullet.  

3.3  Empirical evidence 

Figure 2 shows traditional perspective and contour plots for the conditional 
kernel density estimate with fixed bandwidth, describing 15-year horizon 
evolutions of the distribution of per-capita income relative to the European 
average. As well-known, the selection of the bandwidth parameter is a crucial 
issue in the estimation of densities. Optimal bandwidths have been firstly 
selected using the method developed by Hyndman and Yao (2002) based on a 
combination of asymptotic properties of a local polynomial approximation of the 
conditional density and Silverman’s normal reference rule. These optimal 
 
Fig. 2  Intra-Distribution Dynamics of regional per-capita income in Europe 

Standard perspective plot (left hand side panel) and contour plot (right hand side panel) of 
conditional density for transitions of 15 years between 1980-2002. Estimates are based on a 

kernel density estimator with fixed bandwidths (a = 0.149; b = 0.091) 
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bandwidths, however, give evidence of under-smoothing, while multiplying the 
optimal bandwidths by 3 provides a better smoothing. Therefore, the final 
bandwidth a for the x direction is 0.149, while the final bandwidth b for the y 
direction is 0.091. This figure would suggest that over the period considered 
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European regions have followed a convergence path.11 In fact, using the 
standard terminology, we observe a clockwise shift in mass indicating some 
degree of intra-distribution mobility, which would imply that the richer regions 
became poorer and the poorer became richer. These findings appear consistent 
with those reported in previous work12. Moreover, as it is common in these kinds 
of analyses, a ‘multiple-peaks’ property manifests. In fact, we can observe some 
distinct local maxima (or ‘basins of attraction’). Contour plot makes this clearer. 
 
Fig. 3  Intra-Distribution Dynamics of regional per-capita income in Europe 

Stacked density plot and HDR plot of conditional density for transitions of 15 years between 
1980-2002. Estimates are based on a kernel density estimator with fixed bandwidths 

(a = 0.149; b = 0.091) 
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11  Using higher bandwidth than a = 0.149 and b = 0.091, the evidence of convergence is magnified. It is 

important to stress that the results of the intra-distribution dynamics approach based on the standard 
kernel density estimator strongly depend on the bandwidth parameters chosen. 

12 See, for example, Brasili C, Gutierrez L. 2004. Regional convergence across European Union. Development 
and Comp Systems 0402002, Economics Working Paper Archive EconWPA. 
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segue Fig. 3  
Stacked density plot and HDR plot of conditional density for transitions of 15 years between 

1980-2002. Estimates are based on a kernel density estimator with fixed bandwidths 
(a = 0.149; b = 0.091) 

 
B – HDR plot 
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The same estimation results discussed above are visualized in figure 3 

using the alternative stacked density plot and the HDR plot. From this figure, we 
would learn that regions that at the beginning of the period had a per-capita 
income level lower (higher) than the EU average would be more likely to 
improve (worsen) their relative position over the next 15 years: the 25% HDRs 
associated with relative per-capita income levels at time t lower (higher) than 
1.0 (that is the European average) are all above (below) the main diagonal. 
Again, this means that the poorer economies would be catching up with the 
richer ones. The HDR plot allows to identify (better than the standard contour 
plot) the presence of different ‘convergence clubs’. The position of the highest 
modes and of the 25% HDRs would suggest local convergence at relative 
income levels of 0.7, 1.3, 1.8 and 2.2. Moreover, signs of bimodality would 
appear for very high levels of the distribution at time t: regions that at the 
beginning of the period had a very high income level would have experienced 
over time either a slowdown or a persistent behavior. 

The ergodic distribution of the standard kernel density is plotted in figure 4 
along with the marginal density of relative per-capita incomes at time t. Both the 
initial and the stationary distributions display a picture in which one peak, just 
above the European average. The peak of the ergodic distribution, however, is 
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higher than that of the initial density suggesting that some convergence is 
achieved in the long run.13 

 
Fig. 4  Ergodic and initial distributions of regional per-capita income in Europe 
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However, looking more carefully at figure 3, we may observe that the 

plotted conditional density function does not fit the scattered points very well. In 
particular, we suspect that the sparseness of data at the boundaries and the 
presence of extreme points (Groningen) might have affected the entire 
estimated conditional density function, as well as they have affected the 
conditional mean function. Thus, alternative estimation methods are needed. 
First, we try with a kernel density estimator with a variable bandwidth to 
accommodate the problem of data sparseness (figure 5). The choice of a 
variable bandwidth substantially modifies the form of the conditional density 
function. In particular, the evidence of mobility (and of convergence) is now 
confined to the upper and lower tails of the distribution at time t, while regions 
that at the beginning of the period had a relative per-capita income between 0.7 
and 1.5 did not change their relative position over time. The evidence of 
bimodality associated with very high initial income levels is still there. The S-
shaped form of the modal regression function appears to fit the data better than 
in figure 3. However, we cannot ignore the role of the outlier in affecting the 
shape of the distribution, yet. An estimator robust against outliers is definitely 
needed. 
                                                  
13  The univariate density of relative per-capita income level at time t has been estimated using a 

Gaussian kernel density estimator with bandwidth parameter of 0.039 chosen according to Sheather 
and Jones (1991) procedure. 
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Fig. 5 Intra-Distribution Dynamics of regional per-capita income in Europe  
HDR plot of conditional density for transitions of 15 years between 1980-2002. Estimates are 
based on a kernel density estimator with a variable bandwidth in the x direction (span = 0.3) 

and a fixed bandwidth in the y direction (b = 0.091) 
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Thus, figure 6 reports the results based on the modified conditional kernel 

density estimator with mean function specified by a lowess smoother. As it can 
be observed, after a certain threshold (about 0.6 times the European average), 
the 45-degree diagonal crosses the 25% and 50% HDRs and the modal 
regression follows a straight line. This reveals a high degree of immobility or 
persistence: European regions tended to maintain their relative positions over 
the study period. However, there is still some evidence of mobility at the left 
side of the sample space: the 25% HDRs and the relative modes lie above the 
main diagonal for values of regional income lower than the threshold. This 
means that very poor regions registered higher growth rates than the other 
regions between 1980 and 2002. Moreover, this group of regions seems to 
converge towards a common level of relative per-capita income of about 0.6 
times the overall mean, in line with the club convergence hypothesis. The 
convergence within this poorer group is shown by the slope of the modal 
regression which is almost parallel to the horizontal axis. These results are 
more in line with those presented in Pittau and Zelli (2006) for the sample of 
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NUTS2 regions belonging to the first twelve European Union countries.14 The 
unimodal ergodic distribution obtained from the mean-bias corrected kernel 
density estimator is reported in figure 4. The peak of this distribution is slightly 
lower than that of the ergodic distribution obtained from the standard kernel 
density estimator, suggesting a higher degree of persistence or a lower degree 
of convergence in the long run. 

 
Fig. 6 Intra-Distribution Dynamics of regional per-capita income in Europe  

HDR plot of conditional density for transitions of 15 years between 1980-2002. Estimates are 
based on a kernel density estimator with a variable bandwidth in the x direction (span = 0.3), 

a fixed bandwidth in the y direction (b = 0.091) and a mean function specified by a lowess 
smoother (span = 0.2) 
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Finally, figures 7 and 8 provide the results of conditional local linear 

density estimators. However, these two figures do not add any information to 
the picture drawn above. Indeed, the results of the local linear density estimator 
with variable bandwidth (figure 7) are very similar to those of the kernel density 
estimator with variable bandwidth (figure 5), while the results of the local linear 
density estimator with variable bandwidth and mean bias correction (figure 8) 
are very similar to those of the kernel density estimator with variable bandwidth 
and mean bias correction (figure 6). Therefore, we consider figure 6 as the  

                                                  
14 It is worth noticing that, by using the mean-bias correction approach, we have also found a lower 

sensitivity of the estimates from the choice of the bandwidths. The optimal bandwidth parameters in 
this case have been multiplied by 2, but the results obtained using the original optimal bandwidths and 
by multiplying the optimal bandwidths by 5 are very similar. 
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Fig. 7 Intra-Distribution Dynamics of regional per-capita income in Europe  
HDR plot of conditional density for transitions of 15 years between 1980-2002. Estimates are 

based on a local linear density estimator with a variable bandwidth in the x direction 
(span = 0.3) and a fixed bandwidth in the y direction (b = 0.119) (no mean bias correction) 
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Fig. 8 Intra-Distribution Dynamics of regional per-capita income in Europe  
HDR plot of conditional density for transitions of 15 years between 1980-2002. Estimates are 

based on a local linear density estimator with a variable bandwidth in the x direction 
(span = 0.3), a fixed bandwidth in the y direction (b = 0.119) and a mean function 

specified by a lowess smoother (span = 0.2) 
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definitive picture drawn to represent the intra-distribution dynamics of regional 
per-capita incomes in Europe over the period 1980-200215. 

4 SPATIAL CONDITIONING 

The picture of immobility drawn in Figure 6 is an instance of what Quah 
(1997, p.44) calls “unconditional dynamics”. This author also proposes a 
method to “explain” distribution dynamics, which is very different from 
“discovering a particular coefficient to be significant in a regression of a 
dependent variable on some right-hand side variables”. This method called 
“conditioning” is based on “an empirical computation that helps us understand 
the law of motion in an entire distribution”. The idea is to analyze income 
disparities after conditioning out the effect of some variables. In this last section 
of the paper, we explore the role of spatial dependence in explaining the 
evidence of persistence in the intra-distribution dynamics of regional per-capita 
income in Europe. 

The conditioning scheme adopted here is articulated in two steps, as in 
Quah (1997).16 Firstly, a spatially filtered variable of regional per-capita 
incomes, y% , is constructed by estimating a first-order spatial autoregressive 
model.17 The filtered variable can be interpreted as that part of income of each  

                                                  
15 In theory, the local linear density estimator should solve the mean-bias problem affecting the kernel 

density estimator. Thus, we asked Robert Hyndman whether these results are reasonable. He 
answered that the results reported in this paper are consistent with his experience, according to which 
the kernel density estimator with mean-bias correction gives more reliable findings than the local linear 
density. 

16 It is far from the aim of this paper to analyse the effect of all potential factors conditioning the intra-
distribution dynamics of regional per-capita incomes in Europe. Recently, some papers have proposed 
various techniques, based on a first-step growth regression equation, to analyse the influence of 
different variables jointly (see, for, example, Lamo, 2000). 

17 The filtered variable is the residual from the spatial autoregressive model ln lny W y= ρ + ε , 

where ln y  is the log of relative per-capita income, lnW y  is its spatial lag with W  being a 5-

nearest neighbour weights matrix, and ρ  the spatial autoregressive parameter. This model has been 

estimated for each year using the maximum likelihood procedure implemented in matlab by LeSage. 

The estimated ρ̂  parameters range from 0.71 to 0.57. This method is different from that proposed by 

Quah (1997), which consists of calculating the ratio between the income level of the region and its 

spatial lag. This other method implies assuming a ρ̂  parameter equal to one.  
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Fig. 9 Spatial conditioning 
HDR plot of conditional density for transitions of 15 years between 1980-2002. Estimates are 

based on a kernel density estimator with different fixed bandwidths (a = 0.335; b = 0.168) 

0.
5

1.
0

1.
5

2.
0

2.
5

per-capita gdp at time t

S
pa

tia
lly

 fi
lte

re
d 

pe
r-c

ap
ita

 g
dp

 a
t t

im
e 

t+
15

0.5 1.0 1.5 2.0 2.5

 

Fig. 10 Intra-Distribution Dynamics of regional per-capita income in Europe:  
spatial conditioning 

HDR plot of conditional density for transitions of 15 years between 1980-2002. Estimates are 
based on a kernel density estimator with a variable bandwidth in the x direction (span = 0.3), a 

fixed bandwidth in the y direction (b = 0.168) and a mean function specified by a lowess 
smoother (span = 0.2) 
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region which is not explained by the spillover effects from the contiguous 

regions. Then, the conditional density function ( )f y x%  is estimated. The idea 

is that if inter-regional spillovers play a key role in the regional growth process, 
the evidence of persistence disappears and some convergence emerges. 
Conversely, if the spatial contiguity is not influent, the conditional distribution of 
the transformed variable maintains its original characteristics.  

Figure 9 shows the results obtained using a kernel density estimator with 
fixed bandwidth, while figure 10 reports the results obtained using a kernel 
density estimator with variable bandwidth and mean bias correction. Again, we 
can observe how bad the first estimator fits the data. Comparing the more 
reliable figure 10 to figure 6, we can clearly identify some important changes in 
the conditional distribution of relative per-capita incomes. First, we observe that 
for initial values lower than the European average, the 75% HDRs are now 
closer to the horizontal line (the poor-regions’ club is closer to the EU average). 
Thus, we can say that, without spillover effects, the probability for a poor region 
to migrate from a lower to a higher income class and to converge towards the 
average value would have increased: spatial dependence had a negative effect 
on regional convergence in Europe. Second, for initial values higher than the 
European average, the 25% HDRs are below the main diagonal, suggesting a 
lower persistence of these regions in the original income classes. The evidence 
of a higher degree of convergence in the case of spatially filtered data is also 
corroborated by the ergodic density function (figure 4). 
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5 CONCLUSIONS 

Different approaches have been used in the literature to analyze the 
process of regional income convergence. However, the intra-distribution 
dynamics approach, proposed by Quah (1997), is without any doubt one of the 
most reliable methods, since it examines directly how the whole income 
distribution changes over time. In particular, this methodology is much more 
informative than the regression approach that concentrates on the behavior of 
the representative economy (Magrini, 2004). All of the most recent studies on 
intra-distribution dynamics use the kernel density estimator to describe the law 
of motion of cross-sectional distributions of per-capita incomes. In particular, the 
empirical applications of the kernel stochastic approach to the case of European 
regions report evidence of some degree of convergence: some mobility in the 
regional distribution of relative per-capita income occurs, in the sense that poor 
regions become richer and rich regions grow less rapidly. Other research has 
proposed the emergence of two distinct clubs of convergence: some rich 
regions are converging to a higher mean level of income, and some poor 
regions are also converging but to a lower level of income. 

However, the kernel stochastic approach widely used in the literature to 
analyze the distribution of y (the per-capita income at time t+τ) conditional on x 
(the per-capita income at time t) can be criticized from two different points of 
view. First, the kernel density estimator is usually implemented applying a 
constant bandwidth parameter in the x and y directions. These estimators have 
some undesirable bias properties that can affect the analysis of intra-distribution 
dynamics and, thus, may provide misleading evidence on the real convergence 
process. Secondly, the traditional method of visualizing the output of conditional 
density estimation is not adequate, since it actually displays the joint 
distribution. 

In order to describe the law of motion of cross-sectional distributions of 
regional per-capita incomes in Europe during the period 1980-2002, in this 
paper we use an alternative kernel density estimator with two bandwidth 
parameters a and b (which control the smoothness between conditional 
densities in the x direction and the smoothness of each conditional density in 
the y direction, respectively) and an alternative graphical technique (the Highest 
Density Regions plot) for visualizing conditional density estimators. In particular, 
we use a kernel density estimator with variable bandwidth a and mean bias 
correction. This estimator, developed by Hyndman et al. (1996), has better 
properties than the kernel density estimator with a constant bandwidth 
parameter generally used in the literature on intra-distribution dynamics. 
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Applying the new method to European data, we obtain interesting 
evidence that enriches the debate on the distribution dynamics. In particular, we 
obtain evidence of persistency: over the period 1980-2002 most of the regions 
appear to remain where they were at the beginning. Only a fraction of very poor 
regions improves its position over the time period converging towards a very 
low relative income level (‘club convergence’).  

Finally, we have investigated the role of spatial dependence in affecting 
the observed pattern of regional growth, by combining the new methodology 
proposed here with standard spatial econometrics techniques. The results 
suggest that spatial dependence had a negative effect on regional convergence 
in Europe over the period 1980-2002: after conditioning out the effect of spatial 
dependence, there is still persistence, but the poor-regions’ club is closer to the 
European average. In future work, we will take into account other determinants 
of growth following some recent contributions (Lamo, 2000). This analysis might 
be helpful in producing suggestions for a set of regional policies intended to 
reduce disparities. 



 33

APPENDIX: SAMPLE OF NUTS2 REGIONS 

AT00 Austria DEA2 Köln FR51 Pays de la 
Loire 

ITF6 Calabria UK00 United 
Kingdom 

AT11 Burgenland DEA3 Münster FR52 Bretagne ITG1 Sicilia UKC1 Tees Valley and 
Durham 

AT12 Niederösterreich DEA4 Detmold FR53 Poitou-
Charentes 

ITG2 Sardegna UKC2 Northumberland 
et al. 

AT13 Wien DEA5 Arnsberg FR61 Aquitaine LU00 LUXEMBOURG UKD1 Cumbria 

AT21 Kärnten DEB1 Koblenz FR62 Midi-
Pyrénées 

NL00 Netherlands UKD2 Cheshire 

AT22 Steiermark DEB2 Trier FR63 Limousin NL11 Groningen UKD3 Greater 
Manchester 

AT31 Oberösterreich DEB3 Rheinhessen-
Pfalz 

FR71 Rhône-Alpes NL12 Friesland UKD4 Lancashire 

AT32 Salzburg DEC0 Saarland FR72 Auvergne NL13 Drenthe UKD5 Merseyside 

AT33 Tirol DEF0 Schleswig-
Holstein 

FR81 Languedoc-
Roussillon 

NL21 Overijssel UKE1 East Riding et al.

AT34 Vorarlberg DK00 Denmanrk FR82 Prov.-Alpes-
Côte d'Azur 

NL22 Gelderland UKE2 North Yorkshire 

BE00 Belgium ES00 Spain FR83 Corse NL31 Utrecht UKE3 South Yorkshire

BE10 Bruxelles-
Brussels 

ES11 Galicia GR00 Greece NL32 Noord-Holland UKE4 West Yorkshire 

BE21 Antwerpen ES12 Principado de 
Asturias 

GR11 Anatoliki 
Makedonia 

NL33 Zuid-Holland UKF1 Derbyshire et al.

BE22 Limburg ES13 Cantabria GR12 Kentriki 
Makedonia 

NL34 Zeeland UKF2 Leicestershire et 
al. 

BE23 Oost-
Vlaanderen 

ES21 Pais Vasco GR13 Dytiki 
Makedonia 

NL41 Noord-Brabant UKF3 Lincolnshire 

BE24 Vlaams Brabant ES22 Navarra GR14 Thessalia NL42 Limburg UKG1 Herefordshire et 
al. 

BE25 West-
Vlaanderen 

ES23 La Rioja GR21 Ipeiros PT00 Portugal UKG2 Shropshire et al.

BE31 Brabant Wallon ES24 Aragón GR22 Ionia Nisia PT11 Norte UKG3 West Midlands 

BE32 Hainaut ES30 Comunidad 
de Madrid 

GR23 Dytiki Ellada PT15 Algarve UKH1 East Anglia 

BE33 Liège ES41 Castilla y 
León 

GR24 Sterea Ellada PT16 Centro UKH2 Bedfordshire, 
Hertfordshire 

BE34 Luxembourg ES42 Castilla-la 
Mancha 

GR25 Peloponnisos PT17 Lisboa UKH3 Essex 

BE35 Namur ES43 Extremadura GR30 Attiki PT18 Alentejo UKI1 Inner London 
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segue APPENDIX: SAMPLE OF NUTS2 REGIONS 

DE00 Germany ES51 Cataluña GR41 Voreio Aigaio SE00 Sweden UKI2 Outer London 

DE11 Stuttgart ES52 Comunidad 
Valenciana 

GR42 Notio Aigaio SE01 Stockholm UKJ1 Berkshire, 
Bucks and 
Oxon 

DE12 Karlsruhe ES61 Andalucia GR43 Kriti SE02 Östra 
Mellansverige 

UKJ2 Surrey et al. 

DE13 Freiburg ES62 Región de 
Murcia 

IE01 IRELAND  SE04 Sydsverige UKJ3 Hampshire et 
al. 

DE14 Tübingen FI00 Finland IT00 Italy SE06 Norra 
Mellansverige 

UKJ4 Kent 

DE21 Oberbayern FI13 Itä-Suomi ITC1 Piemonte SE07 Mellersta 
Norrland 

UKK1 Gloucestershire 
et al. 

DE22 Niederbayern FI18 Etelä-Suomi ITC2 Valle d'Aosta SE08 Övre Norrland UKK2 Dorset and 
Somerset 

DE23 Oberpfalz FI19 Länsi-Suomi ITC3 Liguria SE09 Småland med 
öarna 

UKK3 Cornwall et al. 

DE24 Oberfranken FI1A Pohjois-
Suomi 

ITC4 Lombardia SE0A Västsverige UKK4 Devon 

DE25 Mittelfranken FI20 Åland ITD1 Trentino Alto 
Adige 

  UKL1 West Wales et 
al. 

DE26 Unterfranken FR00 France ITD3 Veneto   UKL2 East Wales 

DE27 Schwaben FR10 Île de France ITD4 Friuli-Venezia 
Giulia 

  UKM1 North Eastern 
Scotland 

DE50 Bremen FR21 Champagne-
Ardenne 

ITD5 Emilia-Romagna   UKM2 Eastern 
Scotland 

DE60 Hamburg FR22 Picardie ITE1 Toscana   UKM3 South Western 
Scotland 

DE71 Darmstadt FR23 Haute-
Normandie 

ITE2 Umbria   UKM4 Highlands and 
Islands 

DE72 Gießen FR24 Centre ITE3 Marche   UKN0 Northern 
Ireland 

DE73 Kassel FR25 Basse-
Normandie 

ITE4 Lazio     

DE91 Braunschweig FR26 Bourgogne ITF1 Abruzzo     

DE92 Hannover FR30 Nord - Pas-
de-Calais 

ITF2 Molise     

DE93 Lüneburg FR41 Lorraine ITF3 Campania     

DE94 Weser-Ems FR42 Alsace ITF4 Puglia     

DEA1 Düsseldorf FR43 Franche-
Comté 

ITF5 Basilicata     
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