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ABSTRACT 

This article evaluates patents in a stochastic discrete time framework 
following the real options approach. By modeling the dynamics of the underlying 
as a spatial point process both size and time of the jumps can be treated as 
random variables. The propagation of the jumps from the underlying security to 
the patent value is not restricted to be immediate, but can occur with a random 
delay and with varying intensity, depending on the time to maturity. These 
actual features lead to a more generalized formula for patent value, that in turn 
may give rise to a non trivial difference in patent value, not accounted for in the 
existing literature. 
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1 INTRODUCTION 

This paper provides a theoretical contribution to the literature on patents 
valuation. Assigning economic value to patents is relevant for both patentees 
and at social level. Probably due to this twofold relevance, the economic 
valuation of patents has attracted much attention and efforts among economists 
insomuch that extensive documentation was provided since the second half of 
the '80s. In this paper we move from the common assumption that a patent is 
an option over a technology so that modeling can proceed as a derivative 
contract where the patent value is linked to the properties of the underlying 
security. Indeed, a patent gives the holder the exclusive right (option) on an 
invention. The right can be renewed to the expiration date T or be dropped 
before the statutory limit, if the holder decides not to pay the renewal fee. Yet, 
as patents have the three characteristics of: i) partial irreversibility of the 
investment undertaken, ii) market uncertainty, and iii) the possibility to delay the 
actions, a prominent part of the literature has regarded at the problem as one of 
the (real) options valuation (Pakes (1986), Pakes and Simpson (1989), Bloom 
and Van Reenen (2002), Laxam and Aggarwal (2003), Schwartz (2004), Baudry 
and Dumont (2006), Wu and Tseng (2006) among others). 

The real options approach is based on the definition of an underlying 
security the evolution of which drives the patent evolution. The fluctuations in 
the underlying security capture the uncertainty affecting the supply and demand 
of goods, the production of which is entitled through patent ownership, research 
programmes from other firms, the attainment of patents, the changes in the 
regulatory environment, etc. Most of these factors governing the dynamics of 
the underlying security, do not occur continuously, but rather at discrete points 
in time, causing the underlying state to undergo a jump (for instance, it is quite 
unrealistic to assume that changes in the laws protecting patents occur 
continuously). This fact implies the presence of jumps in the dynamics of the 
patent value. 
In spite of the relevance that jumps can take place in the real world, to the best 
of our knowledge, very little has been said in the literature. Some exceptions 
are worth mentioning: Schwartz (2004) models changes in regulatory 
environment as a possible jump in the Poisson process that the net cash flow 
generated by the project can undergo. In the spirit of McDonald and Siegel 
(1986) he considers only negative jumps affecting the value of the patent in two 
ways. First, reducing the expected rate of capital gain in the underlying security, 
which reduces the value of the option. Second, increasing the variance of 
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percentage changes in the underlying security over finite time intervals, and this 
tends to increase the value of the option. The net effect is a reduction in the 
value of the option (patent). In a patent race context, jumps in a Poisson 
process are used to capture other firms patent attainment (Miltersen and 
Schwartz (2004), Lambrecht and Perraudin (2003), Weeds (2002)). According 
to a different approach, Baudry and Dumont (2006) give a definition of a very 
broad class of discrete time stochastic processes to describe the evolution of 
the rent generated by a patent. In such a way they model regulatory 
interventions, such as a change in the schedule of renewal fees, highlighting 
how the profile of renewal fees can reduce applications from worthless patents. 

Within the real options approach we will present a very general model 
meant to provide a unifying theoretical framework where the existing models of 
patent valuation can be considered as special cases. The generality of the 
model also allows for unconsidered theoretical hypotheses, taking a step 
forward towards a more realistic model. As we will see, this can be achieved by 
incurring the cost of adopting an unusual process: the Spatial Mixed Poisson 
Process, SMPP. 

Is it worth incurring this cost? The answer must be given both in terms of 
theoretical advances the model can generate and in terms of economic 
implications. 
As to the theoretical aspects, the approach can produce several new results 
according to the existing literature. First of all, it allows tackling the problem of 
the value of patents in the presence of jumps in the underlying process allowing 
the process to undergo both negative and positive jumps. The latter can 
accommodate more effective or rigorous protection policies, such as the 
establishment of the Court of Appeals of the Federal Circuit by US Congress or 
the EU directive 2004/48 on the enforcement of intellectual property rights. 
Secondly, the renewal process is not contemplated in the above-mentioned 
literature, which models (only negative) jumps through a Poisson process. At 
the same time, the renewal process has been extensively modeled in literature 
(from Pakes (1986) onwards), but dropouts have been modeled under the "no 
jumps" assumption. Our general model puts together the two strands of 
literature, modeling the jumping value of a patent in the presence of a renewal 
schedule. Thirdly, thinking of a negative jump due to other firms attainment, it 
can happen, and indeed it does, that the novelty contained in the others' patent 
is not so crucial, being, let us say, an invention around attainment. In this case, 
the patent under-valuation suffers from a negative jump but the jump may not 
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be large enough to make the patent worthless. Nevertheless, not considering it 
would be inadequate. Differently from any other paper in the field, the entity of 
the jump is not known in advance according to our approach. As a 
consequence, and even more importantly, the killing jump is not restricted to the 
first negative jump that may occur, but only a large enough jump can kill the 
patent. Empirical works (Schankerman (1998), Lanjouw et al. (1998)) report that 
the distribution of the value of patents is highly skewed, as well as that there are 
many patents with low value and just a few with a high one. It has been sensibly 
assumed that when a low-valued patent is taken out by a competing firm, the 
high-valued patents undergo a non deadly jump. Therefore, according to the 
quoted papers, the number of these jumps is quite far from being negligible and, 
consequently, the cumulated change in the high-valued patent is not marginal 
too. Fourthly, there is a random delay in the transmission of the jump from the 
underlying state to the patent value. As described hereafter, this plays an 
important role in modeling patents with different jump behaviours. Again, let us 
consider a negative jump due to other firms’ patent attainment. It has never 
been clarified in the existing literature why other firms’ attainment should bring 
about an immediate obsolescence in the patent that is being valued. To fix 
ideas, think of a new patent in the consumer electronics field: it takes time 
before the new product is marketed and, once marketed, it takes time before it 
is sufficiently widespread to cut to nil the profit accruing from the "old" patent. 
Yet, once the product is marketed, there is a non negligible part of consumers, 
typically elderly people, who show a high degree of stickiness in accepting new 
technologies, making still temporarily worth the old ones. In such a case, the 
assumption of a no-delay condition is a naïve approximation. At the same time, 
there can be also circumstances in which the delay is almost nil. For instance, it 
may be that clinical trials reveal that a patented drug has some terrible side 
effects, or it may be that the government prohibits certain classes of drugs. This 
case too is accounted for by the model by restricting the transmission delay of 
the jump to zero, as a special case. Fifthly, as the patent gets older, namely 
approaching the final date T, its value becomes less sensitive to the jumps in 
the underlying security. That is because the propagation can take place 
progressively rather than abruptly and also because some jumps in the 
underlying security do not have enough time to propagate to the patent value. 
Therefore, we can realistically affirm that the sensitivity of the patent value 
decreases with respect to the time of the jumps. As a by-product, this sort of 
decay in the strength of the jumps – associated to the delay in the transmission 
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mechanism - allows to capture the limiting cases in which the jump in the 
underlying security is not transmitted to the patent because too close to expiry. 
Sixtly, the adoption of the SMPP avoids the unpleasant hypothesis of no 
expiration date (Schwartz and Moon (2000), Bloom and Van Reenen (2002)), 
thus providing the value of the patent in a closed form solution, and not as a 
numerical solution to a partial differential equation. 

The present article investigates the patent value from the private point of 
view, Nevertheless, the economic implications arising from the paper show that 
a number of policy implications are attached to the analysis. The delay in the 
transmission mechanism plays a role when determining a selling or licensing 
price. If the parties do not consider it properly, they take the risk of over (under) 
estimating the patent if negative (positive) jumps in the underlying state have 
already occurred without propagating on the patent value yet. The same fault 
might be repeated when estimating the aggregate value of patent rights and 
when using such estimation to assess the importance of patent protection. 
Patent protection, related to other systems of return-appropriation from 
inventions, is a crucial issue for policy makers to spur innovation and, more 
generally, R&D. Nevertheless, if the value of patent rights is inadequately 
estimated, biased incentives will be fostered. Yet, as shown hereafter, 
comparative studies on patent rights valuation are not necessarily affected by 
the same bias, making the comparison meaningless. The entity and sign of the 
distortion are hard to predict. Little can be said a priori. Caeteris paribus, the 
transmission delay will depend on the technology field, the average population 
age, the firms’ responsiveness to changes and on many other unpredictable 
factors. For instance, a country with a relatively large number of patents in the 
pharmaceutical field will have a shorter average delay at aggregate level, with 
respect to another country strongly specialized in consumer electronics. At the 
same time, for given technological specialization, "younger" countries are 
expected to experience shorter delays. Moreover, when the occurrence of 
positive jumps is not accounted for by the model and when the first jump is 
considered to be deadly, the resulting patent value is definitely underestimated, 
other things equal. Similar reasoning apply to at micro level. 

 Quantifying the potential bias in the patent valuation goes far beyond the 
scope of this paper. Nonetheless, the main message from the model is that, in 
principle, the valuation can drastically differ and policy recommendations can be 
mistakenly inferred if one neglects the possibility of positive jumps, and the 
delay and decay in jumps propagation. Neither a sensible comparison of patent 
rights can be made between countries and sectors. 
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 It is important to highlight that the cost to incur in terms of algebra to enjoy 
the benefits is not sunk, in the sense that the Mixed Poisson Processes on the 
line and the infinite-server queue models are widely known and used (see e.g. 
Grandell (1997)); and also a spatial setting can be useful in modeling several 
practical situations (e.g. spatial queues, see e.g. Cinlar (1995)). 

From a purely technical point of view, we focus on SMPPs to develop our 
theoretical model by using stochastic techniques grounded on some remarkable 
invariance properties of the family of such processes. The dynamics of the 
underlying state is assumed to evolve in discrete time and both sizes and times 
of the jumps are assumed to be stochastic variables. A discrete environment is 
in agreement with Baudry and Dumont's (2006) model, but we depart from their 
binomial tree by moving to an approach involving Mixed Poisson Processes. 

In our setting, a spatial point process is given ,)},{(: N∈= iiiR ξτ                

by where the coordinates iτ  and iξ  represent, respectively, the arrival time 
and the size of the i-th jump in the dynamics of the underlying security. We also 
assume that the random variables iξ  are i.i.d. and independent from 

the Ni ∈}{ iτ  one-dimensional process . More specifically, at time iτ  a 

jump of size iξ  occurs to the dynamics of the underlying security. After a delay, 

the value of the patent jumps as well, with an intensity dependent on iξ  and iτ . 
The delay is considered to be random in that, as already put forward, it depends 
on several factors, not completely under the economic actors' control.  
Denoting by N  the transformed point process, namely the value of the 
derivative, the type of correlation between R  and N  imposes to treat R  as a 
Spatial Point Process. This distributional hypothesis on R  guarantees 
theoretical results in agreement with the economic intuition. Let us elaborate 
this issue. To be more consistent from an economic point of view, we assume 
the lack of independence between delays and jump sizes. This reasonable 
hypothesis imposes to abandon the usual Mixed Poisson Process framework 
and to treat jump arrivals, iτ , as Spatial Processes. Indeed, if jump arrival times 

follow a one-dimensional Mixed Poisson Process, jump sizes, iξ  are i.i.d. and 
independent on the arrival times. Moreover, in such a case the delays are 
independent on R . It follows that R  and N  have the same stochastic 
structure. As argued in the paper, when the delays are not independent on R , 
the invariance property does not hold, but it can be re-obtained by assuming 
that jump arrival times follow a SMPP. In particular, some recent results on 
stochastic structure invariance of SMPPs with respect to a class of random 
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transformations (see Foschi and Spizzichino (2008)) will turn to be very useful 
in deriving the final results. 

 This set up allows to obtain a theoretical estimate of patent value by 
providing a valuation of the total size of its jumps in a given period. At this point, 
a clarification of the meaning of "theoretical estimate" is in order. Since a patent 
jumps with a certain delay, the jumps that will occur tomorrow are partially due 
to the jumps in the underlying security that have occurred today. Hence, to 
value the patent tomorrow one must give and "estimate" of the jumps in the 
underlying security already occurred, the effect of which will be exerted 
tomorrow. In this sense, and not in the econometric one, the expression 
"theoretical estimate" must be interpreted throughout the paper. 

This quantity is worked out taking also into account the economic and 
statutory constraints that patents are subject to. It can be considered as a key 
quantity to compare our general result with those obtained under more 
restrictive hypotheses. 

The remaining part of the paper is organized as follows. Section 2 
presents the set up of the model describing the dynamics of the underlying 
security, constrained by some economic and statutory terms which patents are 
subject to. Section 3 presents the theoretical results on the valuation of a patent 
over a given time period. Section 4 endogenizes the renewal threshold and 
presents the valuation mechanism for valuing a patent at a given point in time. 
Finally, Section 5 summarizes the results and provides the conclusion. The 
main definitions and the key results on SMPPs are contained in the Appendix. 

2 THE MODEL 

The model for valuing a patent presented hereafter is in accordance with 
the real options approach. The value of a patent is supposed to be driven by the 
evolution of an underlying state. We stress that the evolution of patent value 
can drastically change in the presence of impulsive events. A technological 
improvement or the introduction of laws modifying the protection rules can be 
reasons for a jump in the dynamics involved in the patent valuation process. 
Therefore, in this model we rely on an underlying process driving the patent 
value in a discrete time framework. To this respect, it is interesting to note that 
some models of patent valuation approximate the results obtained in continuous 
time with an approximate formulation in discrete time, recognizing the latter to 
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be more realistic. "[...] The decision to abandon the project is evaluated at 
discrete points in time, instead of continuously. This would seem to be a more 
reasonable assumption when analyzing R&D projects [...]" (Schwartz (2004) p. 
52) 

Let us consider a probability space with filtration ),}{,,( 0 Ptt ≥Ω FF  
containing all the random variables used throughout the paper. Let us denote as 
T the set of the stopping times in ],0[ +∞ , i.e.  

}.0,}{|],0[:{: ≥∀∈≤+∞→Ω= tt tFT ττ  (1) 

The time-dependent dynamic St  of the underlying security related to a 
patent is assumed to jump as follows:  

,}{
1

0 it
i

t i
SS ξτ <

+∞

=
∑+= 1  (2) 

where: 00 >S  is the initial value of the underlying security. It is reasonably 

known, so we assume that 0S  is a deterministic positive constant.  

T∈iτ , N∈i , and iτ  takes on values in ],0[ +∞ . It is the stochastic time of the 

i -th jump in the dynamics of the underlying security. 

ii τξ F∈ , N∈i , and iξ  takes on values in R. It represents the size of the i-th 

jump of the underlying state dynamics. 
The patent valuation theory assumes that the value of a patent is null 

when the underlying state value is equal to zero. In turn, the underlying state is 
null when a negative jump with a large enough size occurs. From these simple 
considerations the following result states immediately: 
 
Proposition 1  

Define *τ  as the first hitting time of tS  on the boundary 0 :  
* : inf{ 0| 0}.tt Sτ = ≥ =  (3) 

Then one of the following alternatives holds: 

•  +∞=*τ  

• jj ττ ≡∈∃ *|N  

Moreover, patents are subject to a statutory limit, i.e. the expiration date 0>T , 
when the patent loses its value and the production of the protected good 
becomes of public domain1. Hence, the underlying state must be observed till 

                                      
1  Generally, T=20 years. 
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the threshold T  if the dynamics do not hit the absorbing barrier zero before. 
This information can be synthetically formalized as  

 

*
10 { }

*

, for ;

0, for .
ii t i

t

S t T
S

t T
τ ξ τ

τ

+∞
= <⎧ + < ∧∑⎪= ⎨

≥ ∧⎪⎩

1
 (4) 

The underlying state dynamics can be fully described by using a point 
process framework. The set of bivariate random variables N∈= iiiR )},{(: ξτ  is a 

spatial point process for tS , where the random variables iξ  are i.i.d. and 

independent from the one-dimensional process N∈ii}{τ . 

In our setting, we will consider 0>iξ  as a good news for the patent value, 

and 0<iξ  as a bad news. For instance, good news can be represented by any 
policy aimed at strengthening or widening the patent holder's rights, such as a 
more efficient judicial system, a decrease in costs of suing an infringer, an 
enhancement of the enforcement system, a tougher infringer's punishment, an 
increase in the statutory limit, etc. Shortly, good news are such to produce 
additional opportunities to exploit the patented innovation, conversely for bad 
news (Baudry and Dumont (2006)).  

We now stress that the presence of jumps in the dynamic of the underlying 
security implies the presence of jumps in the value of the patent. We describe 

this mechanism by introducing a bivariate random variable ),( )2()1(
iii www = , 

N∈i , taking values on a set W  2R⊆ , and a transformation φ ,  

,],0[],0[: RR ×+∞→××+∞ Wφ  

such that ( ) RR ×+∞→×+∞⋅⋅ ],0[],0[:,, iwφ  is measurable and one-to-one 

for any fixed W∈iw . Now, we will consider the point-wise spatial transformation 

φΦ  of the point process R  and the variable W  :  

 ( ) ,},,{),( N∈=Φ≡ iiii wRN ξτφφ W  (5) 

where .}{ N∈= iiwW  The random quantity ),( WRφΦ  models the jumps of the 

value of the patent accruing from the jumps in the underlying security dynamics. 
Following the aforementioned literature on renewals, we must also insert in the 
dynamics of patent value the fee that a patent holder periodically pays to keep 
alive the patent itself. Indeed, a patent holder pays a known positive amount 
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jX , in general not constant, at a fixed date jT , with N∈j . This deterministic 

payment process stops naturally in three situations: 

• when the expiration date T  is reached; 

• after the random time *τ , e.g. when the value of the underlying security 
becomes null. In this case, obviously, the last periodical payment is the 

one immediately before the exit time *τ ; 
• if the patent holder reckons that patent renewal is not a suitable economic 

strategy. This can happen if the expected net gain from holding the patent 
is negative. Formally, for the time being, we can assume that there exists a 
deterministic time-varying threshold )(tγ  such that 0=kX , for each 

integer ∗> jk , where  

 )}.(|{min: jj TXjj γ≥∈=∗ N  (6) 

We will refer to )(tγ  as the renewal threshold and it will be endogenized in 

section 4. In order to formalize the intervention of the critical index ∗j  in our 

model, we define the time-dependent property tΠ  as }.{: tT
jt ≤=Π ∗  

Indicating the renewal time at which the patent holder decides not to renew 
the patent. When the patent is not renewed, its value obviously becomes null 
from that time onward. In particular, when the underlying security reaches the 
expiration date T or the patent is not renewed, the value of the patent becomes 
immediately null, without time transformations. Differently, when the underlying 
security dynamics reaches the barrier 0, the patent value becomes null at the 
random time-transformation of τ*. Furthermore, we denote the dynamics of 

patent value in the time interval ],0[ t  as . We also denote as 0C  

the starting point of patent dynamics at time 0=t . As it should be, 0C  is a 

deterministic nonnegative term. Lastly, we denote as 
iτ

φ|  the restriction of the 

function φ  to the first component. In this set up several cases can be 

distinguished. 
 
 
 
 

]),0([ tC
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• If Tt ∧< *τ  and property tΠ  does not hold, then  

 ( ) ( ) ;,,]),0([ }{
1

}{
1

0 | tTj
j

tiii
i

jii
XwCtC ≤

+∞

=
≤

+∞

=
∑∑ −+= 11 τφτ

ξτφ          (7) 

the value of a patent over the interval ],0[ t , when a large enough jump in 

the underlying security has not occurred, *τ<t , and the final expiration 
date, T , has not been reached is given by the algebraic sum of three 
components: the initial value of the patent, 0C , plus the sum of the 
changes in the patent value accruing from the jumps in the underlying 
security, ),,( ⋅⋅⋅φ , minus the sum of all the renewal fees paid till time t . 

• if Tt <≤*τ  and property *τΠ  does not hold, then  

 ( ) ( ) ;,,]),0([ }{
1

}}{}{{
1

0
|

∗∗ ≤

+∞

=
≤∩≤

+∞

=
∑∑ −+=

ττττφτ
ξτφ

jiii Tj
j

tiii
i

XwCtC 11  (8) 

equation (8), consistently with (7), redefines the value of a patent in the 
occurrence that a large enough jump in the underlying security had 
intervened before the final date and the patent holder has paid the renewal 

fees till *τ   

• if *τ<≤ tT  and property TΠ  does not hold, then  

 ( ) ( ) ;,,:]),0([ }{
1

}{
1

0 | TTj
j

Tiii
i

T jii
XwCCtC ≤

+∞

=
≤

+∞

=
∑∑ −+== 11 τφτ

ξτφ  (9) 

equation (9) depicts the situation in which a patent reaches the final 
expiration date, ,T  and its value is determined by the whole set of jumps in 
the underlying security. Therefore, we avoid the unpleasant hypothesis of 
no expiration date (as in Schwartz and Moon (2000), Bloom and Van 
Reenen (2002)). 

• if property tΠ  holds (and obviously *τ≤t  ), then  

 ( ) ( ) .,,:]),0([
1

}{
1

0 | j

j

j
Tiii

i
T XwCCtC

jiij
∑∑

∗

∗∗
=

≤

+∞

=

−+== τφτ
ξτφ 1    (10) 

eventually, (10) depicts the early exit at a renewal date decided by the 
patent holder not paying the renewal fee. 



 15

An explicit formulation of the transformation φ  can be finally introduced 
and substituted into equations (7-10) describing the patent value. To this aim, 
we highlight a few important aspects to make the valuation process as 
generalized as possible: 

• According to the real options literature on patent valuation, the presence of 
a jump in the underlying security is meant to capture some stylized facts, 
for instance, when another firm takes out a patent on a new, more 
technologically-sophisticated product. The new product is supposed to 
make the valued patent immediately outdated. In the real world it takes 
time before the new product is marketed and, once marketed, it takes time 
before it is widely diffused to the point of cutting to zero the profits accruing 
from the old patent. According to the model, it takes time before a jump in 
the underlying security turns into a corresponding jump in the patent value. 
For instance, let’s think of a new patent for some electronic device, such 
as a new cellphone or a new television incorporating technology 
improvements. It is quite evident that it takes time between the new patent 
registration and the complete obsolescence of the old patent. Especially 
for consumer electronics, elderly people are less willing to adopt new 
technologies, making still temporarily worth the old ones. In such a case, 
the assumption of a no-delay condition is a naïve approximation. At the 
same time, we do not deny that there can be circumstances in which the 
delay is almost null. For instance, it may be that clinical trials reveal that a 
patented drug has some terrible side effects, or it may be that the 
government prohibits certain classes of drugs (Miltersen and Schwartz 
(2004)). In order to make the transmission mechanism of the jump from the 
underlying security to the patent value as general as possible, we assume 
that there is a random delay between the time of occurrence of a shock in 
the underlying state dynamics and the time of the correspondent jump in 
the patent value. The no delay case can thus be regarded as a special 
case, embedded into this very general assumption. This general 
transmission mechanism has practical spillovers when determining 
licensing or selling prices. If the parties do not take the transmission delay 
into account, the deal can finally set a too high (low) price whenever a 
negative (positive) jump in the underlying dynamics occurs and is not yet 
propagated to the patent. At aggregate level, macro valuations of patents 
rights can end up with over/under estimates. It follows that if important 
patent-protection measures, concerning other means of returns-
appropriation from invention, are constructed2, misleading policy 

                                      
2  Such as the Equivalent Subsidy Rate, ESR, given by the ratio of the total value of patent rights relative  

to R&D used to produce those patents. 
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implications can be drawn and misleading comparisons can be made 
between countries and sectors. 

• The value of a patent falls (rises) when a bad (good) news appears in the 
economic system, i.e. the presence of a jump of negative (positive) size. 
The entity of the rise or fall of the patent value is not fully controlled by the 
economic actors, i.e., the patentees. 

• The value of the patent is increasing with respect to the size of the jumps 
in the underlying security. 

• The propagation process can be progressive rather than abrupt and some 
jumps in the underlying security have not enough time to propagate to the 
patent value. Therefore, when modeling the realistic feature, we also 
consider that the sensitivity of the patent value decreases with respect to 
the time of the jumps. Formally, if two jumps of the same size occur at two 
different points in time, say ∗∗∗ < ττ  the value of the patent has a more 
remarkable jump in ∗τ , since the end of the patent's life is nearer. As a by-
product, this sort of decay in the strength of the jumps, associated to the 
delay in the transmission mechanism, allows to capture those limiting 
cases in which the jump in the underlying security is not transmitted to the 
patent because too close to expiry. For instance, suppose a rival firm takes 
out a new patent when the old one is close to expiration. The expected 
profit loss will be almost negligible, both because of the residual short life 
of the patent and because of the delay in the jump propagation to the 
patent value. 

Considering the above, we assume that φ  can consistently operate as follows:  

 (1) (2)( , , ) : ( , e ), ,i
i i i i i i iw w w iτφ τ ξ τ ξ −= + ∈N  (11) 

where )2()1( , ii ww  are random variables with nonnegative support, i.e. 
2),0[ +∞≡W  representing a stochastic delay and a stochastic percentage, 

respectively. They translate times and sizes of the jumps in the dynamics of the 
underlying process into times and sizes of the jumps in the patent value. By 
defining  

 (1) (2): , : e ,ii i i i i iw w iτλ τ γ ξ −= + = ∀ ∈N  (12) 

the transformed process N  defined in (N) can be rewritten as  

 {( , )} .i i iN λ γ ∈= N  (13) 

Thus, the evolution of patent value in (7-10) can be rewritten as: 

If Tt ∧< *τ  and property tΠ  does not hold, then  
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∑∑ −+= 11 λγ   (14) 

if Tt <≤*τ  and property *τΠ  does not hold, then  

 ;]),0([ }{
1

}}{}{
1

0 ** τττλγ ≤

+∞

=
≤∩≤

+∞

=
∑∑ −+=

jii Tj
j

ti
i

XCtC 11  (15) 

if *τ<≤ tT  and property TΠ  does not hold, then  

 ;:]),0([ }{
1

}{
1

0 TTj
j

Ti
i

T ji
XCCtC ≤

+∞

=
≤

+∞

=
∑∑ −+== 11 λγ  (16) 

• if property tΠ  holds (and, obviously, *τ≤t ), then  

 .:]),0([
1

}{
1

0 j

j

j
Ti

i
T XCCtC

jij
∑∑

∗

∗∗
=

≤

+∞

=

−+== λγ 1  (17) 

To the aim of providing an estimate of the patent value (14-17) we can assert: 
 
Remark 1 Even if the sizes of the stochastic jumps are theoretically 

unbounded, without loss of generality one can reasonably assume the 
existence of a positive upper and a negative lower threshold sufficiently large 
for the jumps sizes in the underlying state dynamics and patent value. 

Therefore, we assume hereafter the existence of two positive constants a  and 
b  such that, fixed N∈j , iξ  and iγ  are random variables with support in 

],[ aa−  and ],[ bb− , respectively. 

There is a clear correlation between iγ  and the ),( ii ξτ  couple. As already 
argued in the Introduction, this fact does not allow to consider R as a stochastic 
process on the line, and we need to treat R as a spatial point process. The 
assumption that R is a SMPP allows to reach two targets. First of all, to provide 
a model for simultaneously estimating the number and size of the jumps in the 
dynamics of the underlying security and, consequently, the number and size of 
the jumps in the dynamics of patent value. Secondly, to show that, according to 
some recent results, SMPPs can guarantee the invariance of the stochastic 
structure between R and N. More precisely, if R is a SMPP, the N process is a 
SMPP too (see the Appendix). 
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3 THE PATENT VALUE OVER A FINITE TIME INTERVAL 

This section is devoted to provide a mechanism for the valuation of a 
patent in a given period. The valuation is attained by computing the total size of 
the jumps in the underlying security over a given time interval  

],[: sTT +′′=I  

with 0, >′ sT  and TsT ≤+′ , and then providing an estimate of the 
corresponding total size of patent jumps that will occur in the following time 
interval  

],,[ rTT +′′′′=H  

with 0>r , sTT +′=′′ . Without loss of generality, we can assume that 
TrT ≤+′′ . I is the period under scrutiny and H  is the time period that we 

observe, assumed to be sequential to I. We then consider the jumps occurring 
at times I∈iτ . In particular, if a shock intervenes in the economic environment 

and the underlying security dynamics register a jump of size iξ  at a random 

time I∈iτ , then the same shock propagates on the value of the patent, as 

explained through the introduction of function φ . More precisely, after the delay 

iλ , the patent value registers a jump of size. iγ . We now consider the regions 

],[ aaI −×≡ I , ],[ bbJ −×≡I  and ],[ bbH −×≡ H . In agreement with a 
commonly used notation, we denote by )(ΔR  and )(ΔN  the number in the 
elements of the spatial point process R  and N  respectively, that are contained 
in a bidimensional set Δ . Further, let us define the random subset of indexes 

N⊂},...,{ 1 Kii , such that  

.)},(),...,,{(
11

RI
KK iiii ∩=ξτξτ  

We notice that )(IRK ≡ .  
The exit time of the underlying security dynamics from the barrier 0 is 

located at a random jumping time 
Ki

τ , by Proposition 1, where N∈K , with 

the convention +∞=:K  if tS  does not hit the barrier 0. We denote by *τI  the 

restriction of the counting spatial process R  in the set I  up to the stochastic 

threshold *τ . Formally, we have  

,)},(),...,,{( *
11 ...,1 RIKniiii KnKn

∩==∧∧ τξτξτ  and )( *τIRKK ≡∧ .  
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Equally, let us denote the random subset of indexes N⊂},...,{ ~1 Kii , such 

that ,)},(),...,,{( *~~11
NJ

KK iiii ∩= τγλγλ  where *τJ  denotes the propagation 

on the process N  in the set J  of the restriction of R  due to the presence of 

the exit time *τ . We notice that )(~
*τJNK ≡ . 

Furthermore, property tΠ  implies the existence of an index KK ~~ ≤∗  such 

that 1~~ +≤< ∗∗∗ KjK . We denote as ∗,*τJ  the further restriction on *τJ  

driven by property tΠ . We have .)},(),...,,{( ,*
~~11

NJ
KK
iiii ∩= ∗∗∗ τγλγλ  

We also consider the random subset of indexes 

KnKnK iiii ,...,111 },...,{},...,{ =∧
′
′

′ ⊆  such that the delay iλ , with },...,{ 1
′
′

′∈ Kiii , 

falls in the set J . We have a conditioning on the set *τI . Taking into account 

property tΠ , we finally define:  

.)},(),...,,{()},(),...,,{( |,*
~~11~~11

∗
∗∗

′′′′ ∩=∩ ∗ ττγλγλγλγλ INJ
KKKK
iiiiiiii  

We denote )(~
,)( *

* ∗
∗ ≡∧′ ττ

JNKK I .Evidently, .1))()(( **
* ,)( =≤∗ τττ

IRJNP I  

 
Remark 2 Since a SMPP is a simple process (see Appendix, Lemma 1) 

and regions *τI  and ∗∗ ,τ
J  are bounded, then +∞<)]([ *τIRE  and 

+∞<∗)]([ ,*τJNE . 

We now provide an estimate of the total size of patents jumps due to the 
jumps in the underlying security in H , following the Cerqueti et al. approach 

(2009). Let },..,{ 1 Kjj ′′=ϒ  be the random subset of indexes such that 

.)},(),...,,{( ,*
11

NH
KK jjjj ∩= ∗′′′′ τγλγλ  As usual, ∗,*τH  denotes the 

restrictions on the process N  in H  due to the presence of the threshold *τ  for 
R  and the property tΠ  for N . By definition of the process N , we can also 

write )( ,* ∗≡′′ τHNK . 

We omit hereafter the subscript *τ  in I  and ,**τ  in J  and H  to have a 
less cumbersome notation. Nevertheless, the computed quantities have to be 
intended under the threshold condition ∗τ  for the process R  and under the 
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property tΠ  for the process N . The amount HQ  represents the total size of the 
jumps in the patent value over the time interval H , due to the jumps in the 

underlying security and it is defined as .j
j

Q γ∑
ϒ∈

≡H  

A theoretical valuation of the entity HQ  can be obtained on the basis of the 
information collected in the previous period I. More precisely, we will 
approximate the conditional expectation of HQ  given: 

• the number )(IR  of jumps in the underlying security dynamics during the 
interval I ; 

• the number )(JN  of jumps in the patent value during I ; 

• the number of jumps in the underlying security occurred over I that have 
propagated to the patent in the same time interval. According to formula 
(33), we denote this quantity by )()( JN I . 

We consider a partition of H  :  

 ,,}{: ,...,1
)( N∈=Δ = kH ks
k
sk  (18) 

where ],,(: )()(
1

)( k
s

k
s

k
s ccH −×= H  with ks ,...,1= , bcbc k

k
k =−= )()(

0 ,  and, for each 

k , }{ )(k
sc  is increasing with respect to s .  

We denote by )(k
sa  the expected number of jumps in patent value 

observed in the time interval H  and with size ],,( )()(
1

k
s

k
s cc −  for each ks ,...,1= , 

conditioned on the previous history in the period I, i.e.  

 .)(,)(,)(|)( ][ )(
)()( mJNnJNnIRHNa I
k
s

k
s =′′=′=≡E  (19) 

The next result provides a closed form expression to compute )(k
sa , for any 

N∈k  and ks ,...,1= . Evidence is given in Cerqueti et al. (2009). 
 
Proposition 2 

⋅′′′
−

=
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is the posterior distribution on Λ  defined in Eq. (35). 
By using Proposition 2, we can provide an upper and a lower 

approximation of ])(,)(,)(|[ )( mJNnJNnIRQ I =′′=′=HE . In fact, by letting  

,: )()(

1

k
s

k
s

k

s
k ac∑

=

=θ )()(
1

1

:ˆ k
s

k
s

k

s
k ac −

=
∑=θ   and for any N∈k , we have  

 .])(,)(,)(|[ˆ
)( kIk mJNnJNnIRQ θθ ≤=′′=′=≤ HE  (20) 

}ˆ{ kθ  is non-decreasing and }{ kθ  is non-increasing with respect to k . 
Moreover, there exists a nonnegative constant depending on the region H , say 
qH , such that .limˆlim Hqkkkk

==
+∞→+∞→
θθ  

By (20), taking the limit, we can conclude that   
 

 .])(,)(,)(|[ )( HH qmJNnJNnIRQ I ==′′=′=E  (21) 

At this point, it is possible to write a formula for the value of the patent 

accumulated in H , ,~
HC  taking also into account the deterministic renewal 

process .)},{( N∈iii XT  Starting from Hq  given in (21) we subtract the 

deterministic total amount of the annuities describing the periodic patent 

renewal process, under the constraints formalized in property tΠ  and exit time 
*τ . In order to formalize the intervention of property tΠ , the summation of the 

fees are stopped at the index 1−∗j , according to formula (6). We also stress 

that an expected value must be computed as the presence of the stochastic 

threshold ?τ  maintains randomness in our framework.  
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 )],(1[ *}{

1

1
jTj

j

j
TFXq

j λ−⋅⋅−= ∈

−

=
∑
∗

HH 1  (22) 

where *λ is the delay of the exit time *τ , according to formula (12) and *λF is 

the (marginal) distribution function of *λ . 
Equation (22) provides the value of the patent over a fixed time interval, 

H , under the provision that both the underlying process has never hit the barrier 
zero before and that, according to (6), the statutory payments have never been 
greater than the time varying threshold )(tγ . Note that, even without assuming 
no expiration date, the result is given in a closed form, instead of being solved 
numerically as a partial differential equation. Not surprisingly the patent value is 
given by a finite value Hq  minus the sum of the renewal fees paid till that 
moment. Despite its intuitive significance, (22) reveals some critical 
considerations. 

Recall that Hq  is a theoretical computation of the total size of the jumps in 
the patent value over a given time interval H, due to the jumps in the underlying 
security, conditional on past information. This quantity is the algebraic sum of 
three components:  

 ,)()()( cba qqqq HHHH −+=  (23) 

 where )(aqH  is given by the jumps in the patent due to the jumps in the 

underlying security occurred in H ; )(bqH represents the jumps in the patent value 
due to the jumps in the underlying security occurred before H  and propagated 

in H ; finally, )(cqH  represents the jumps in the patent due to the jumps in the 
underlying security occurred in H  and propagated after H . 

For a given renewal schedule, formula (23) is useful to compare the patent 
value obtained under (22) with the patent value obtained under an alternative 
naive model. By naive model, we mean a model in which no delay between the 
underlying security and the patent jump is assumed. Under this restrictive 
hypothesis, let us denote by Hq~  the total size of the jumps in the patent value 
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over a given time interval H , due to the jumps in the underlying security. The no 
delay condition implies that  

 ,~ )(aqq HH =  (24) 

 where )(aqH  is defined as in (23).  

By (23) and (21), we generally have that HH qq ~=/ , since there is no reason 

to expect )()( cb qq HH = . Therefore, we argue that paying a little price in terms of 
algebraic effort, the model can better fit the real world, providing us with the 
patent value in a closed form solution. More remarkably, (22) and (23) show 
potential source of bias when estimating the value of patents in the "no delay" 
hypothesis. So far, the comparison between our model and an alternative naive 
one has been kept as simple as possible, but the bias can be worsened if one 
considers also that naive models contemplate neither the possibility of positive 
jumps nor the decay process of the transmission mechanism. Furthermore, if a 
naive model is applied to determine the value of patent rights in two countries or 
in two sectors, there is no reason to believe that the two biases will take on the 
same sign and the same intensity, hence the comparison can be meaningless. 

4 THE ENDOGENOUS RENEWAL THRESHOLD 

In this section, the deterministic time varying renewal threshold, )(tγ  is 
avoided to be determined at endogenous level. In so doing we can show more 
clearly the strict (apparent) similarity between the results of this model and the 
results obtained in other works under simpler hypotheses. This comparison is 
interesting in that it shows how it is possible to use SMPPs consistently with the 
findings of the literature on patent renewals. At the same time, it highlights the 
key differences concealed in the seemingly similar results. 

The decision of not renewing the patent is irreversible in the sense that 
once the fee is not paid for the first time the patent dies out forever, and there is 
no possibility to restart it again in the future, should the net gain turns positive. 
If, at each renewal time, the holder compares jX  to the expected gain accruing 

over the next time interval, );[ 1+jj TT , he does not properly take into account the 

irreversibility of the choice, making a myopic decision. In order to avoid this 
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trivial mistake, all future fees should be properly taken into account and 
compared to the whole set of future expected gains. 

Therefore, a more consistent way to endogeneize the renewal threshold 
)(tγ  is given by considering the discounted revenues as well as the total 

amount of the discounted future fees. We provide an estimate of the discounted 
patent value at a fixed date, say 0>t , on the basis of the information collected 
in a previous period of time. Two main terms feature in the valuation 
mechanism: the first driven by the jumps in the underlying security, the second 

concerning the fees. The introduction of the catastrophic event due to *τ  
should also be considered, since it goes beyond the patent holder’s control. 
Inversely, the constraint on the discounted fees, formalized in property tΠ , has 
to be removed. 

As already said, we need to compute the discounted gain from the patent 
after t . Keeping the theoretical framework and the notation unchanged, without 
loss of generality, we can assume that I∉t , i.e. sTt +′> . Moreover, we 
introduce a discount factor )1,0(∈β . Consider a partition of H :  

 ,,}{: ,...,1
)( N∈=Ψ = hG hv
h
vh  (25) 

where ],,[],(: )()(
1

)( bbttG h
v

h
v

h
v −×= −  with hv ?,,1= , Tttt h

h
h == )()(

0 ,  and, for each 

h , }{ )(h
vt  is increasing with respect to v . 
A further refined partition of H  can be obtained by the intersection of the 

partitions defined in (18) and (25). We have  

 ,,;
)()( }{ N∈∩=Ψ∩Δ ≤≤ hkGH kshv
h
v

k
shk  (26) 

Fix the four integers khvs ,,, . Analogously to formula (19), we denote by 
),(

,
hk
vsb  the expected number of jumps in the patent value observed in the time 

interval ],( )()(
1

h
v

h
v tt −  with size ],( )()(

1
k
s

k
s cc − , conditioned on the previous history in 

period I, i.e.  

 .)(,)(,)(|)( ][ )(
)()(),(

, mJNnJNnIRGHNb I
h
v

k
s

hk
vs =′′=′=∩≡E  (27) 

In this case, Proposition 2 can be rewritten in order to compute ),(
,
hk
vsb , for 

any 2),( N∈hk  and },...,1{},...,1{),( hkvs ×∈ . 
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Proposition 3 
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where ),,,,;( mnnJIu ′′′λ  is defined as in Proposition 2. 

We define as tQ  the discounted expected value of the patent at time ,t  
the value of which uniquely stems from the jumps in the dynamics of the 
underlying process. Proposition 3 allows to get an upper and a lower 
approximation of ])(,)(,)(|[ )( mJNnJNnIRQ It =′′=′=E . 

Consider the following sequences:  

,: ),(
,
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For any N∈kh, , we have  

 .])(,)(,)(|[ˆ
,)(, hkIthk mJNnJNnIRQ φφ ≤=′′=′=≤E  (28) 

 }ˆ{ , hkφ  is non-decreasing and }{ ,hkφ  is non-increasing with respect to k  and h . 

Moreover, there exists a nonnegative constant dependent on t , named )(tp , 

such that ).(limˆlim ,,,,
tphkhkhkhk

==
+∞→+∞→
φφ  

By (20), taking the limit, we can conclude that  

 ).(])(,)(,)(|[ )( tpmJNnJNnIRQ It ==′′=′=E  (29) 

Denote as tC
~

 the discounted patent value valuated at time ,t  which is 

drawn taking into consideration the patent renewal process .)},{( N∈iii XT  
Proceeding in agreement with the previous section and taking into account the 

random exit time ,*τ  tC
~

 can be computed as:  
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The renewal threshold is so endogeneized by posing .),(~ ttCt ∀= γ  
 Equation (30) is perfectly in line with the literature on renewals (e.g. 

Shankerman and Pakes (1986) eq. (1), Pakes and Simpson (1989) eq. (1), 
Baudry and Dumont (2006) eq.(4)), in that the value of the patent at time t  is 
nothing but the expected net gain discounted from the valuation time, ,t  till its 
possible death. This value is given by the difference of two components. A first 
component stemming from the discounted expected value of the jumps in the 
underlying security, )(tp , decreased by the second one, the discounted value 
of the total amount of the fees payable in the future. In this quantity, the term 

)](1[ * jTFλ−  captures the presence of the exit time *τ  associated to a 

catastrophic (negative) jump of the underlying security, that is responsible for 
the collapse of the patent value. That is, if a renewal fee jX  is due in a time jT  

smaller than the delay *λ  of the stochastic time *τ , it has to be inserted in the 

computation. Otherwise Xj  does not feed into the summation in (30). 
In spite of the close similarity to the aforementioned literature, the crucial 

point that causes us to depart from the )(tp  term which plays the analogous 

role of Hq  in (22). The endogenization of the renewal threshold )(tγ  does not 
alter the reasoning put forward commenting on (22), which still applies. But the 
appearance of (30) makes clearer that our set up is a generalization of the 
existing literature, aimed at providing actual features that can induce a non 
negligible difference in the value of patents. Defining by C  the value of the 

patent under an alternative model, the reasons that make tC
~

 differ from C  - 
such as positive jumps and delay and decay in the jump transmission 

mechanism - still hold in (30). More specifically, CCt =
~

 is a special case of (30) 
and its occurrence is purely accidental. 
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Again, to a quantitative appraisal of the difference is far beyond the scope 
of this paper. We limit ourselves to bring it to notice. 

5 CONCLUSIONS 

This paper is a generalization of the existing models for valuing a patent in 
a real options framework. Briefly speaking, the generalization consists in 
accounting for positive and negative random jumps, inducing possible delays in 
the transmission mechanism between the jumps in the underlying process and 
the corresponding jumps in the patent value, and considering a decay process 
of the intensity of the shocks occurred to the underlying state. If a shock occurs 
in the underlying process when the patent is close to expiration, caeteris 
paribus, it will affect the patent with lower intensity. 

We have suggested that the inclusion of these hypotheses is essential to 
add realism to the valuation process. In turn, this step also brings significant 
improvements, such as a solution to patent valuation in a closed form, without 
assuming the absence of expiration and considering the presence of non killing 
jumps. It follows that patent evaluation can greatly differ whether our model is 
adopted or a more naive approach is followed. Many factors account for that 
difference. As already said above, and according to some empirical works, the 
number of non deadly jumps seems to be as remarkable as the presumable 
cumulated change in the high-valued patent. The delay in the transmission 
mechanism is such that the patents value is accidentally equal under the two 
models, and the differences in both sign and magnitude can be hardly 
predicted. 

Giving an estimate of the value of patent rights through a naive model, 
from a policy point of view, can lead to biased results that hinder a meaningful 
comparison between sectors and countries. If policy recommendations and 
interventions are based on a biased comparison, misleading incentives may be 
put into play. 

Form a theoretical point of view, and as a possible development for further 
research, it would be interesting to apply this set up to a patent race context, 
addressing the question of what may happen to the value of waiting to invest 
when the transmission delay and the other above-mentioned features are 
concerned. On one hand, the delay increases the value of waiting before 
incurring the sunk cost of patenting a new invention. If a positive jump in the 
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underlying process has not fully propagated to the derivative, the trigger value 
of the investment will be successively reached, making still worth waiting. On the 
other hand, the possibility of positive jumps makes the would-be patentee more 
eager to take out the patent to enjoy the benefits. Yet, the presence of the delay 
makes the "winner takes all" hypothesis not sustainable, at least before the 
delay is sufficiently disappeared. Does the removal of this hypothesis lessen the 
competition and therefore the result of the firms race? What consequences 
there might be in terms of R&D? Another key point that would be worthwhile 
tackling in a succeeding study is the empirical evaluation of patent rights under 
the two different approaches, thorough an econometric estimate or a simulation 
approach. 
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APPENDIX: SOME THEORY ON SPATIAL MIXED POISSON 
PROCESSES 

This Appendix contains the definition and some recent results on SMPPs, 
that can be already found in the literature. 

Let us define a probability space ( )P,,FΩ  containing all the random 
variables involved in our discussion. SMPPs are particular spatial point 
processes. For a survey of the general theory of spatial point processes, we 
remind to Daley and Vere-Jones (1988) and Stoyan et al. (1995). Let us 

consider a measure space )),(,( Mkk RR B , where )( kRB  is the Borel σ-
algebra and M is absolutely continuous with respect to the Lebesgue measure. 
We also introduce a nonnegative random variable Λ  with probability 
distribution ]1,0[: →RU  . 

 
Definition 1  

A spatial process R  is Mixed Poisson with mixing distribution U and 

baseline intensity measure M(•) if and only if, for )( kI RB∈  and for N∈n ,  

 ).(
!

)]([))(( )(
0

λλλ dU
n
IMenIRP

n
IM−∞

∫==   (31) 

We need some properties on the SMPPs, that have been used in ourwork.  
Since M  is absolutely continuous with respect to the Lebesgue measure, the 
following result states immediately.  

Lemma 1 A SMPP is a simple point process. 
Now, consider a spatial point process N∈≡ iiXR }{ , with k

iX R∈ ⊆X , 

N∈k  , for any i R∈ . 
Consider a sequence of i.i.d. random variables N∈= iiW }{W  taking values 

on a set nR⊆W  for some N∈n . Define a transformation  

,: kR⊆→× YWXφ  where ( ), :wφ ⋅ →X Y  is measurable and one-to-one 

foranyfixed W∈w . We define the transformed spatial point process as follows:  

 ( ){ } N∈= iii WXN ,φ  (32) 

We can also write ( ),N Rφ= Φ W  instead of (32). 

The following theorem is already known in the literature (see e.g. Cinlar 
(1995)) and a proof based on stochastic geometrical arguments can be found in 
Foschi and Spizzichino (2008). 
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Theorem 1. Let R  be a SMPP with mixing distribution U  and baseline 
intensity measure M. Consider a sequence of i.i.d. random variables 

{ } N∈= iiWW , with distribution G  and independent of R . 

Then ),( WRN φΦ=  is a SMPP with the same mixing distribution U  and 

intensity measure ),())(()( 1 wdGJMJM wn

−∗ ∫= φ
R

 where J ⊆ Y  and 1( )wX Jφ−∈   

if and only if ( , )X w Jφ ∈  . 
Theorem 1 is a key result in our work, since it explains the invariance of 

SMPPs with respect to a very general class of transformations. A further result 
can be provided concerning conditional estimates of SMPPs realizations. Let us 
consider three regions YX ⊆⊆ HJI ,, . We aim at estimating the number of 

points of N  fallen in H , knowing the restriction of the processes R and N to the 
regions I and J respectively. First of all, we need to introduce a notation 
describing the number of points of R fallen in I and sent by the transformation φ  
into J  or into H. The latter quantities are represented by the random variables 

)()( JN I  and )()( HN I  respectively, given by:  

 }.,{,)( }{}),({)( HJKKN IXKWX
A

I ∈≡ ∈∈
∈
∑ αααφ
α

11   (33) 

A straightforward computation proves the following result: 
Lemma 2. For a given )(, INI X⊆  can be thought of as a SMPP of its 

own, with mixing distribution U  and baseline intensity measure  
1

( ) ( ) ( ( )) ( )
nI wM J M I J dG wφ∗ −= ∩∫R  

Define the event: 

( , ) ( ) ( ){ ( ) , ( ) }, , {0}l m I IE N H l N J m l m R≡ = = ∈ ∪  

In Cerqueti et al. (2009), the following theorem is proved: 
 
Theorem 2. For arbitrary subsets , , ,I J H  we have  

 ( , )( ( ) | ( ) , ( ) , )l mP N H n R I n N J n E′ ′′= = =   (34) 

( ) ( )( )

0

[ ( )]
( ; , , , , ) ,

( )!
I

n l
M HIM H

e u I J n n m d
n l

λλ
λ λ

∗
∗ −

∞ − ′ ′′=
−∫  

where  
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( )
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0
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M J M In m n

M J M In m n
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   (35) 
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( ){ ( ) , ( ) , ( ) }IR I n N J n N J m′ ′′= = =

Theorem 2 also provides an estimate of the parameter Λ .We notice, in 
fact, that ( ; , , , , )u I J n n mλ ′ ′′ coincides with the posterior distribution of Λ  given  
the observation of  the event ,i.e.  

( )( ; , , , , ) ( | ( ) , ( ) , ( ) )Iu I J n n m U R I n N J n N J mλ λ′ ′′ ′ ′′= = = = .This fact allows us to 

explicitly derive the distribution of the transformed process N , starting from  
the definition of the SMPP R . 
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