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ABSTRACT 

In this paper I compare different models, a linear and a non-linear one, for 
forecasting industrial production by means of some related indicators. I claim 
that the difficulties associated with the correct identification of a non-linear 
model could be a possible cause of the often observed worse performance of 
non-linear models with respect to linear ones observed in the empirical 
literature. To cope with this issue I use a non-linear non-parametric model. The 
results are promising, as the forecasting performance shows a clear 
improvement over the linear parametric model. 

Keywords: Forecasting, Business Surveys, Non-linear time-series models,  
Non-parametric models. 
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1 INTRODUCTION

This paper1 deals with the modelling of the relation between Ital-
ian industrial production and some leading indicators. In particular
the focusing is on the forecasting performance of a non-linear non-
parametric model vs. a linear one. The results are analysed within a
set of forecasting performance indicators and show a superiority of
the non-linear non-parametric model.

The relevance of the problem at hand should be self-evident to
all practitioners used to provide short-term forecasts of, e.g., GDP:
actually, obtaining a good forecast of industrial production is often the
most important step, because it is by far the most relevant indicator
about short-term development of the economy.

The rationale for this exercise is that there is no theoretical or
practical reason why the relation between the industrial production
index and the selected indicators should be linear; nevertheless, it is
well documented in the long stream of literature on non-linear time-
series modelling, that correct speci�cation of non-linear models can
be a very di�cult task and, I would add, once obtained would anyway
be a�ected by stability problems (in the sense of temporal stability
of the model) even more formidable than linear ones. Having said
that, a natural alternative could be represented by a non-linear non-
parametric model. The non-parametric feature could be useful to
overcome the identi�cation issue involved with specifying a particular
non-linear model. This comes at a cost: estimation consistency rates
are slower than those obtainable for a correctly speci�ed parametric
model, either linear or non-linear. Anyway, I think that this issue is
much more overlooked than it should be, at least in a forecasting
context. In fact, forecasting models are much more susceptible to
be miss-speci�ed, as their construction must take into consideration
issues such as data availability and timeliness, which greatly limit the
opportunity to build a correctly speci�ed model.

2 LITERATURE

There is a considerable literature in modelling the industrial produc-
tion index, both in the univariate and in the multivariate framework.

1I wish to thank T. Proietti for his precious advise, F. Peracchi and G. Cubadda for their valuable

comments.
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Moreover, in both cases, linear as well as non-linear speci�cations
have been employed.

As far as the univariate framework is considered, in many cases a
simple linear model shows a better performance over non-linear ones.
As an example, Siliverstovs and Dijk (2003) compare linear autore-
gressive (AR), linear AR with breaks, threshold autoregressive (TAR),
self-exciting autoregressive (SETAR) and Markov-switching autore-
gressive (MS-AR) models, in terms of point, interval and density
forecasts. They found that linear AR outperforms the other mod-
els when point forecasts are considered, although MS-AR model are
more accurate for interval and density forecasts. The study was con-
ducted on seasonally adjusted data: however it is well known that the
use of such data with AR models is at least questionable.2 Moreover,
seasonal adjustment implies revisions in the data, which in order to
be properly accounted for in the forecast evaluation, would need the
use of di�erent vintages of data. In the end, the raw data might well
be the �nal target to forecast. Indeed, the issue of correctly treating
the seasonality in monthly industrial production has received attention
too, leading also in this case to detect and model non-linearities. As
an example, Osborn and Matas-Mir (2003) observe the non-linearity
emerging from the interactions of seasonal and business cycle �uc-
tuations, �nding a reduction in seasonality in the upper regime of
the business cycle. A similar kind of non-linearity was found also
in the Italian case by Proietti (1998) and Bruno and Lupi (2004).
Franses and van Dijk (2005) consider di�erent seasonal models and
conclude that simpler models for seasonality yield better point fore-
casts for short horizons, while more elaborate models perform better
for longer horizons.

Öcal (2000) compares a smooth-transition autoregressive (STAR)
model vs. a linear AR within a set of macroeconomic variables. In
particular, for the industrial production he �nds that the best model
is a three regimes STAR, even though no statistically signi�cant dif-
ferences are found between linear and non-linear models.

On the other hand, the usefulness of non-linear models seems
stronger in the case of multivariate models. As in Bradley and Jansen
(2004), who consider a STAR model against a linear AR model for
joint industrial production and stock returns. Some improvement in

2Seasonal adjustment procedures most of times cause a zero in the spectral density of the

adjusted data at seasonal frequencies, so that such series do not possess an invertible representation.
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industrial production forecast is observed for the non-linear model
over the linear one.

Venetis et al. (2004) compare a linear autoregressive distributed
lag (ADL) model with a TAR model using industrial production and
term spread; the non-linear modelling obtains in part better results.
Also Jagric (2003) �nds that neural network approach helps improving
forecasting industrial production by means of a leading indicator over
a linear model, while Simpson et al. (2001), who consider a linear
ADL and a MS model with a leading indicator, �nd that one-step
ahead forecasts produced by the linear model are better.

Huh (1998) exploits asymmetry in the relation between industrial
production and an index of �nancial markets conditions. One-step
ahead forecasts from a linear and a MS model are compared, with
the latter performing signi�cantly better.

In the Italian case, Marchetti and Parigi (2000) �nd evidence of
non-linearity in the relation between industrial production and electric-
ity consumption, which they represent with a STAR model. Anyway,
the best forecasting performance is obtained with a linear model.

3 MODEL

In this work I consider two set of variables:

• I denote with Xt the variable of interest to be forecast (station-
ary transformation of the industrial production index);

• I denote with Zt the related indicator, which is chosen in turn
from a group of three variables better described in section 5.

In the empirical exercise, which is fully described in section 5, it is
necessary to consider the di�erent timing with which the two variables
are released. In this case the related indicators are released about
45 days before the industrial production index, so when the latter is
available for month t, the former are available at least up to month
t + 1. Therefore, if a relation is found between Xt and Zt−d , with
d ≥ 0, it is possible to forecast Xt up to d + 1 step-ahead.

The non-linear non-parametric model used is a functional coe�-
cient regression (FCR) model:

Xt = a1(Zt−d)Xt−1+. . .+ap(Zt−d)Xt−p+εt , t = p+1, . . . , T (1)
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where εt is a martingale di�erence process and {Xt , . . . , Xt−p} is a
strictly stationary β−mixing process.

Model (1) is non-parametric in the sense that the functional form
of the coe�cients ai(·) is not speci�ed. It is derived from the state-
dependent model introduced by Priestley (1980). Cai et al. (2000a)
and Cai et al. (2000b) address the issue of estimation, bandwidth
selection and testing. The main justi�cation for using such a model
is that the autoregressive coe�cients are varying, and depend, in a
rather smooth way, on the state of the leading indicator Zt at a
certain lag d .

This kind of model has some appealing features, in that it nests
the linear AR model, as well as some popular non-linear paramet-
ric models, such as threshold autoregressive (TAR), exponential au-
toregressive (EXPAR) and smooth transition autoregressive (STAR)
models. Therefore, it is su�ciently general to handle many kinds of
non-linearities often found in macroeconomic time series, while re-
ducing considerably the problem of model complexity: the unknown
functions, in fact, depend only on one variable in this set-up.

Moreover, it has a nice interpretation, as the coe�cients depend
on the �state� of the variable Zt−d in a smooth way, di�erently from
what happens in the TAR model, where the autoregressive param-
eters shift discontinuously following the discrete number of states
associated to the variable Zt−d .

3.1 Estimation

The estimation of the unknown functions a(·) of model (1) can be
carried out approximating them locally with a polynomial of suitable
order. In particular, considering a �rst order polynomial ai(u) can be
approximated as follows around x :

ai(u) ≈ ai(x) + a′i(u − x) ≡ αi + βi(u − x). (2)

In order to carry out this locally and denoting with Ut = Zt−d , one
has to minimize the following expression with respect to {αi , βi , i =
1, . . . p}:

T∑
t=p+1

{
Xt −

p∑
i=1

[αi + βi(Ut − u)]Xt−p

}2
K

(
Ut − u
h

)
(3)
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where K(·) is a non-negative weight function which downweight ob-
servations far from the point u while the parameter h is a smoothing
constant, generally called bandwidth. This parameter represents how
much �local� the estimator is, that is the width of the interval around
a point u which is used for estimating the coe�cient functions at
that point.

Denote with XXX the T × 2n matrix whose t row is:
(Xt−1, . . . , Xt−p, Xt−1(Ut − u), . . . , Xt−p(Ut − u)), with YYY the T × 1
vector (X1, . . . , XT ), withWWW the T×T matrix with t diagonal element
equal to h−1K

(
Ut−u
h

)
and 0 elsewhere. The minimization problem (3)

has the following solution:

β̂ββ = (XXX ′WWWXXX)−1XXX ′WWWYYY (4)

where βββ = (α1, . . . , αp, β1, . . . , βp). Therefore, the �rst p elements
of β̂ββ, which I denote with {α̂i}i=1,...,p are the local linear estimate of
the functional coe�cients {ai(u)}i=1,...,p.

3.2 Bandwidth and lag length selection

In order to carry out the estimation of the functional coe�cients also
the values of h and p must be estimated from the data. 3

A form of cross validation has been used to select both these
quantities, following Cai et al. (2000a). In particular, denoting with
Q and m two integers such that Qm < T ; the �rst Q sub-series of
length T − qm are used (q = 1, . . . , Q) to estimate the model and
then the one-step forecasting errors are computed for the next m
points of the series.

For a given h (bandwidth) and p de�ne the average prediction
error for the single sub-series:

APEq(h, p) =
1

m

T−qm+m∑
t=T−qm+1

[
Xt −

p∑
i=1

α̂i ,q(Zt−d)Xt−i

]2
, q = 1, . . . , Q.

(5)
where α̂i ,q(u) is the coe�cient estimated using the observations
{1, . . . , T−qm}. For example, when q = 2 the set of data {1, . . . , T−
2m} is used for getting the estimated coe�cients α̂i ,2(u), and the

3In principle this is valid also for d , the delay parameter of the leading indicator; nevertheless for

the purpose of this paper this is not necessary, as will be better illustrated in section 5.
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subsequent set of data {T −2m+1, . . . , T −m} is used for calculat-
ing the prediction error (5). Following Cai et al. (2000b), Q is taken
equal to 4 and m equal to T/10.

Moreover, de�ne the quantity APE(h, p), which averages over
the all the sub-series considered:

APE(h, p) = Q−1
Q∑
q=1

APEq(h, p). (6)

The values of p and h are then chosen so that (6) is minimized.
In the procedure described above the bandwidth is maintained

�xed over the support of u. An alternative approach, so called k-
nearest neighbour (k-nn), consists, instead, in taking a �xed number
of observation around a given value of u, leading to a bandwidth which
is not constant over the support of u. Though I applied also this
method for estimating the functional coe�cients ai(·), I do not show
the results here, which were not as good as in the �xed bandwidth
case.

4 DATA

I carry out this exercise using Italian data, in particular:

• industrial production index (Xt), which is published monthly by
ISTAT, the national statistical o�ce;

• survey results (Zt) on: production trend (PT), production level
(PL), order books (OB), released monthly by ISAE, a state
owned economic research institute.

The industrial production index is considered in its working-days
adjusted form4. Moreover, stationarity is achieved through log trans-
formation and seasonal di�erentiation.

The leading indicators are produced through a survey where in-
dustrial entrepreneurs are asked many questions. Among them: the
production trend (PT) in their �rm during the following 3-4 months;
the answer can be �increasing�, �decreasing�, �stationary�. Individual

4This is a minor point in our view, as the published working days adjusted series is obtained by

means of the procedure TRAMO-SEATS, which is equivalent to apply a linear transformation to

the original series. As the TRAMO-SEATS speci�cations are publicly available, switching between

raw and working-days adjusted data is straightforward.
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Figure 1: Italian Industrial production industry - total industry ex-
cluding construction - left panel: index base 2005=100, right panel:
seasonal di�erence of logs.
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results are then suitably aggregated to provide shares attributable to
the di�erent answers for the whole manufacturing sector. Here we
follow the usual technique of quantifying those results with the so
called balance, i.e. the di�erence between �increasing� and �decreas-
ing� aggregate answers. Another question is the current production
level (PL); the answers can be �high�, �normal�, �low�, and the results
are aggregated as before to obtain a balance between �high� and �low�
answers. The same holds for order books (OB). In principle it is pos-
sible to conjecture that PT is a leading series, as well as OB, while
PL should be a coincident indicator. In practice this is not always so
clear cut.

The survey series obtained are signi�cantly a�ected by seasonality;
anyway the use of the seasonal di�erence here could be questionable,
as the series can be hardly thought of as being seasonally integrated
(actually the series are bounded).5 Therefore I removed the seasonal-
ity by taking a 12-term asymmetric moving average. This is preferable
in my opinion to the alternative of removing the seasonality by more
elaborate �ltering methods, like X-12 or TRAMO-SEATS, because
they imply a revision pattern, which I would like to avoid as much as
possibile in a forecasting exercise.

5Indeed, Pappalardo (1998) shows that in most cases business surveys data can be characterized

by a stationary seasonality.
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Figure 2: Survey results � balances � 12-term moving average.
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5 EMPIRICAL FRAMEWORK

The results of the FCR model are compared to those stemming from
an autoregressive distributed lag (ADL) model. The latter can be
considered a linear benchmark for those who are seeking to forecast
a variable by means of another variable. In our case the ADL model
takes the following form:

Xt =

p∑
i=1

αiXt−i +

q∑
j=d

βjZt−j + εt d ≥ 0. (7)

Obviously also in this case the order p and q must be chosen in
some way, usually by some likelihood-based criterion.

I choose not to establish a value for d , the delay with which the
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indicator variable enters the relation with the industrial production,
neither in the FCR nor in the ADL model. Indeed, my purpose is to
compare the FCR with the ADL model and I compare this perfor-
mance separately for di�erent values of d , i.e. d = 0, . . . , 5. Given
the release timing of Xt and Zt , the latter is always available with a
lead of at least one month; therefore, for every d , forecasts can be
generated up to d + 1 step-ahead.

Once allowed for the data loss due to di�erentiation and lag cre-
ation, I have a database of 196 monthly observations. Identi�cation
of signi�cant lags for the models were carried out on the �rst 145
observations; the last 48 were used for forecast evaluation. Obvi-
ously a possibly di�erent set of lags was selected for every lag d with
which the leading indicators enter the relationships (1) and (7). More
speci�cally, in the case of the FCR model, for every value of d be-
tween 0 and 5 a di�erent model was identi�ed, by means of the cross
validation criterion (6); the set of lags considered was {1, . . . , p, 12}.
The seasonal lag was always included, while the di�erent values of
1 ≤ p ≤ 6 were considered.

The ADL model was identi�ed for every d considering a general
model of the form:

Xt =

12∑
i=1

αiXt−i +

12∑
j=d

βjZt−j + εt d ∈ {0, . . . , 5}. (8)

and selecting a subset of regressors by means of the BIC criterion in
a stepwise regression.

6 RESULTS

Forecasting performance was evaluated with reference to some usual
indicators. In particular, denoting with Xt the true observation of the
variable X at time t and with X̂st the s-step ahead forecast for Xt ,
and with 1, . . . , τ the interval of evaluation, I calculated the following
measures:

• mean error (ME): 1τ
∑τ

t=1

(
Xt − X̂st

)
;

• mean absolute error (MAE): 1τ
∑τ

t=1

∣∣Xt − X̂st∣∣;
• root mean squared error (RMSE):

√
1
τ

∑τ
t=1

(
Xt − X̂st

)2
;
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• median error (MedE): Med
{
Xt − X̂st

}
t=1,...,τ

;

• median absolute error (MedAE): Med
{∣∣Xt − X̂st∣∣}t=1,...,τ .

In table 1 I summarize the main results obtained using the RMSE.
In particular the ratio of FCR root mean squared forecasting error
over that of the ADL model is given, so that a value less than 1 in
the table means a better performance of the FCR model.

Moreover the statistical signi�cance of the results obtained was
assessed by means of the variant to the Diebold-Mariano test pro-
posed by Harvey et al. (1998). Let us denote with ei t the forecasting
errors stemming from model i at time t, then when comparing τ
forecasts stemming from two competing models i and j the Diebold-
Mariano statistics is:

DM =
τ−1

∑τ
t=1[g(ei t)− g(ej t)]√
τ−12π ˆfd(0)

(9)

where fd(0) is a consistent estimate of the spectral density of
τ−1

∑τ
t=1[g(ei t)−g(ej t)] at frequency 0. The variant of the test pro-

posed by Harvey et al. (1998) considers also the forecasting horizon
s:

DM∗ =

[
τ + 1− 2s + τ−1s(s − 1)

τ

]1/2
DM. (10)

The authors propose to compare such a statistic with the Student
t distribution with τ − 1 degrees of freedom. In this paper I consider
the function g(·) = | · |.

The results of table 1 show an impressive improvement in fore-
casting performance of the FCR model with respect to the linear one,
especially at lower level of d and at shortest horizons. The best im-
provement is perhaps achieved when PT is used as the state variable;
in the short horizons and for values of d less than 4 the forecasting
performance improvement is generally around 20%. Moreover, at 1-
step ahead horizon the results are always signi�cant at conventional
values. Only in one case the ADL model outperforms the FCR one.
In the case of PL, the improvement is slightly less pronounced, even
though it is still true that the non-linear non-parametric model always
outperforms the linear one; the improvement is signi�cant, according
to the DM test, especially for values of d larger than 2. When OB is
used as the state variable, the results are less favourable to the FCR
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model, but the general pattern is similar to those observed when PL
is used.

Table 1: Ratio of FCR/ADL RMSE by state variable value (d) and
forecasting horizon (s)

PT

s=1 s=2 s=3 s=4 s=5 s=6
d=0 0.798**
d=1 0.819* 0.816
d=2 0.784** 0.783 0.921
d=3 0.798** 0.794 0.902 1.045
d=4 0.918** 0.929* 0.914 0.960 0.957
d=5 0.957* 0.964 0.933 0.967 0.963 0.964

PL

s=1 s=2 s=3 s=4 s=5 s=6
d=0 0.760
d=1 0.884 0.926
d=2 0.921 0.970 0.998
d=3 0.928** 0.943** 0.914** 0.951**
d=4 0.961* 0.968** 0.932** 0.965* 0.965**
d=5 0.976 0.976* 0.941** 0.973* 0.969** 0.961**

OB

s=1 s=2 s=3 s=4 s=5 s=6
d=0 0.866
d=1 0.892 0.947
d=2 0.927 0.962 1.070##
d=3 0.968 0.999 0.999 1.068
d=4 0.954** 0.954** 0.933** 0.980 1.010
d=5 0.958* 0.953 0.937* 0.982 1.003 1.012

* denotes FCR forecast are better than ADL forecasts at 10% con�dence level, ** at 5%. # is

used when ADL forecasts are signi�cantly better.

Another evaluation criteria employed is the fraction of corrected
directional forecasts, de�ned as:

1

τ

τ∑
t=1

I(Xt−Xt−s)(X̂st−Xt−s)=1.

In table 2 I show for each indicator and each value of delay d and
forecasting horizon s, the ratio between the fraction of correct direc-
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tional forecasts of FCR model over those stemming from the ADL
model. A value larger than 1 means that the FCR model performs
better than the ADL one. For each state variable considered (PT,
PL, and OB) there are 21 possibile comparisons. The results mimic
those obtained with the RMSE comparison: when PT is taken as the
state variable in 10 cases out of 21 the FCR model shows a better
performance, in 3 cases it is the same, in 8 cases the ADL obtains
better results. Turning to PL the superiority of the FCR model is
sharper, with 12 cases favouring it and 5 cases favouring the ADL,
the remaining 4 being equal. Only when OB is taken as the indica-
tor, the performance of FCR model is worst than the ADL, with 9
cases favouring the �rst against 10 for the latter, and two cases being
equal.
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Table 2: Ratio of FCR/ADL correct directional forecasts by state
variable value (d) and forecasting horizon (s)

PT

s=1 s=2 s=3 s=4 s=5 s=6
d=1 1.115
d=2 1.115 1.103
d=3 1.120 1.103 1.034
d=4 0.900 1.000 1.000 1.032
d=5 0.963 0.935 0.931 1.000 1.028
d=6 0.963 0.935 0.931 1.030 1.028 0.944

PL

s=1 s=2 s=3 s=4 s=5 s=6
d=1 0.867
d=2 0.966 0.939
d=3 0.964 0.829 1.038
d=4 1.000 1.074 1.080 1.033
d=5 1.000 1.074 1.080 1.067 1.057
d=6 1.000 1.111 1.080 1.100 1.057 1.000

OB

s=1 s=2 s=3 s=4 s=5 s=6
d=1 0.931
d=2 1.000 0.909
d=3 0.929 0.967 0.867
d=4 0.963 1.000 1.083 1.067
d=5 0.929 0.967 1.040 1.103 1.088
d=6 0.964 1.036 0.960 1.143 1.057 1.029
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7 CONCLUSIONS

A non-linear non-parametric framework has been used to model the
relationship between industrial production and some related indica-
tors. The model has a nice interpretation, as the related indicators
are directly interpretable as indicators of the business cycle state.

Forecasting errors up to 6-step-ahead, as compared to a base-
line autoregressive distributed lag model, show in general a valuable
reduction in magnitude using the non-linear non-parametric model,
by some common measures. Moreover, the di�erences reported are
sometimes statistically signi�cant according to the Diebold-Mariano
test.

Further elaborations could include:

• a deeper analysis of the forecasting performance results, devel-
oping indicators more suited to the case at hand;

• the calculation of a direct multi-step forecast (as in Harvill and
Ray (2005));

• the calculation of density forecasts;

• as far as the modelling is concerned, the calculation of gener-
alised impulse response function (GIRF) could give some more
insights into the dynamic properties of the model.
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A ESTIMATION EXAMPLE

In this appendix some estimation results are shown for a particular
FCR model. This particular model is taken just as an example, which
I think is useful to shed some light also on the use of such models as
descriptive devices. The example reported refers to the use of PL as
the state variable, with d=1. In this case the lags selected are: 1 to
5, 12.

The �rst step, once the model has been de�ned, is to get an
estimate of the bandwidth to be used. In �gure 3 I report the plot
with the results from the cross-validation criterion adopted.

Figure 3: Average prediction error (APE) vs. bandwidth
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A plot of the six coe�cient functions is shown in �gure 4; it is
possible to see that they show a considerable variability.

In the following plots I try to summarize these results, taking
advantage that for a given value of the state variable, the model is a
linear AR model.

In particular, in �gure 5 the sum of the coe�cients functions is
reported in a scatter against the value of the state variable. In a
linear AR model the sum of the coe�cients is often considered as an
indicator of persistence. In this case the plot shows that for central
values of the state variable persistence is lower, while it is higher for
low values.

Another way to summarize the results is shown in �gure 6. In this
case I consider three values of the state variable (the �rst, second
and third quartile) and consider the spectral densities associated to
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the three linear AR models implied by those values. It is possibile
to appreciate the increasing persistence associated with diminishing
values of the state variable.

The previous evidence could be interpreted as a possible sign of
asymmetry over the business cycle.

Figure 4: Coe�cient functions for the model with PLt−1 as the state
variable.
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Figure 5: Sum of coe�cient functions for the model with PLt−1 as
the state variable.
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Figure 6: Spectral density of the three autoregressive models associ-
ated with the �rst, second and third quartile of the state variable.
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The residuals of the model can be checked to see if the are white
noise. In table 3 some test statistics about the residuals are reported.
Normality tests reject the null hypothesis mainly due to 4 outlying ob-
servations; the same statistics do not show departure from normality
when these outliers are removed. Runs test and Ljiung-Box test can-
not reject the null of white noise residuals. Moreover they appear to
be linear at conventional levels according to the tests proposed by
Teräsvirta and White (Teräsvirta et al., 1993).

Table 3: Main residual diagnostic for the FCR model with LPt−1.
Test p-value
Jarque-Bera: 0.00
Shapiro-Wilk: 0.00
Jarque-Bera(*): 0.28
Shapiro-Wilk(*): 0.16
Runs: 0.20
Teräsvirta nn: 0.09
White nn: 0.06
Ljiung-Box (1): 0.61
Ljiung-Box (3): 0.76
Ljiung-Box (12): 0.27
(*) with 4 outliers removed

In the end, following Fan and Yao (2003) a test can be carried
out to verify the null hypothesis of a linear AR(p) model against that
of a FCR model. The test proposed is based on the residual sum of
squares of the two models:

Tn,6 =
T − p
2
(RSS0 − RSS1)/RSS1 (11)

where RSS0 is the residuals sum of squares of the AR(p) model and
RSS1 that of the FCR model. The distribution of the test can be
found bootstrapping the residuals from the FCR model. In the case
of LPt−1 the test rejected the null of linearity with a p-value of 0.001
and 1000 bootstrap replications.
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