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Abstract
In this paper we deal with the problem of the choice of direct or indirect seasonal adjust-

ment procedure. This is a problem for which the literature has not proposed many solutions;
on the other hand, a solution of this problem is a crucial task, particularly for the National
Statistical Institutes. In a model-based framework, the direct seasonal adjusted series is
preferable, but if the discrepancy with respect the indirect seasonal adjusted series is large
it can cause confusion in the users. We propose a new approach, based on the idea that the
two data generating processes of the alternative series (the direct and the indirect sesonal
adjusted series) can be compared in terms of a dissimilarity measure between ARMA mod-
els. A small dissimilarity implies that the difference between direct and indirect series is
negligible and that the direct approach can be used. Our approach differs from the others
because it is based on general statistical properties of the series and not on particular as-
pects, as the revisions, the smoothness, etc. An example referred to the Italian industrial
production series is explained, in which the new procedure is applied. The procedure is
performed in terms of hypothesis test, so that its application is standard and very simple.

1. Introduction

A time series can be the result of adding up two or more sub-series (eventually weighted);
generally, the seasonal adjusted aggregate series is not identical to the sum of seasonal
adjusted sub-series.

From a point of view of the seasonal adjusted policy, two natural alternatives arise to
seasonal adjust the aggregate series:

1) the aggregated series is seasonal adjusted on its own (direct method);
2) the aggregate seasonal adjusted series is obtained as the sum of the seasonal adjusted

sub-series (indirect method).
It is clear that summing up two or more series and seasonally adjusting the total does

not necessarily give the same result as seasonally adjusting and then summing up the sub-
series. In other terms, the two approaches can give different results and a problem of choice
of the method arises.

The direct method can be preferable since the aggregate adjusted series is clearly of
higher quality. Furthermore, following a model-based approach, the direct method is the
natural choice, the seasonal adjusted series being derived from the ARIMA model of the
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rough series. On the other side the indirect method allows the consistency in aggregation.
Generally, quality and consistency are considered equally important, so that various

criteria was proposed in literature in order to choose the direct or indirect method. Dagum
(1979) uses two measures of lack of smoothness of the seasonal adjusted series to decide
between the direct or the indirect method; Lothian and Morry (1977) indicate small revision
errors as an important aspect in order to choose the method for seasonal adjustment, whereas
Ghysels (1997) suggests the final estimation error. A criterion based on the stability of
the seasonal adjusted series is used in the X-12-RegARIMA program, based on sliding
spans and month-to month changes (Findley et al., 1998). Another kind of approach was
proposed by den Butter and Fase (1991), allocating the discrepancy between direct and
indirect methods among the seasonal adjusted sub-series, with weights proportional to the
variance of the sub-series. Practically, they create a new seasonal adjusted series, different
from those obtained from direct or indirect methods.

The most recent developments refer directly to the model-based approach. Planas and
Campolongo (2000) base their analysis both on final estimation errors and total revisions in
concurrent estimates, applying this procedure for the industrial production series of Euro-
pean Monetary Union countries. Gómez (2000) has proposed a criterion based on empirical
revisions, measured with three alternative statistics.

The limit of these approaches is that the choice is based on a single aspect of the seasonal
adjustment (smoothness, errors, revisions, stability,...), that can change with the kind of
series or subjectively, according to the point of view of the researcher.

A typical common criterion (recommended by Eurostat too) is the use of direct sea-
sonal adjustment if the discrepancy between methods is acceptable, and the use of indirect
seasonal adjustment if this discrepancy is relevant. But when the discrepancy is relevant?

The simple evaluation of the size of the discrepancies is not sufficient. The same dis-
crepancy in a series in level has a different interpretation than in a series of indices; in
addition two series can be similar for the absolute discrepancies but they can have different
behaviors in terms of period-to-period variations.1

If the seasonal adjustment method is a model based one, we retain that a correct ap-
proach should consider the stochastic properties of the series. In other terms, we retain
that a discrepancy is relevant when the data generating process (DGP) of the indirect sea-
sonal adjusted series is different from the DGP of the direct seasonal adjusted one. This
approach is different from the others because we do not consider a particular aspect of the
seasonal adjustment, but its global statistical properties, concerning the DGP. We propose
the use of Piccolo’s (1990) distance as a measure of difference between the two DGP’s. In
the next section we formalize the problem of direct and indirect method; in section 3 the
new procedure is illustrated and in the section 4 an application of the approach is described.
Concluding remarks follow. In Appendix A are reported the tables and in Appendix B the
figures.

1 The period-to-period variations are relevant with seasonal adjusted data.
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2. The Consistency Problem

The purpose of this section is to provide a formal framework to analyze the so-called con-
sistency problem. Let us consider a seasonal observed time series Yt composed of two
series Xt and Zt, via the relationship

Yt = Xt + Zt; t = 1; :::; T:

Furthermore, we assume that the observable time series Yt; Xt; Zt can be expressed as

Yt = Y ns
t + Y s

t

Xt = Xns
t + Xs

t

Zt = Zns
t + Zs

t

where Y ns
t , Xns

t ; Zns
t are the nonseasonal components containing the trend, the cycles and

the irregular components, and Y s
t , Xs

t ; Zs
t are the seasonal components.

A desired property of seasonal adjustment procedures is that

Y ns
t = Xns

t + Zns
t : (1)

In general the consistency requirement (1) is not satisfied: the seasonal adjusted series
directly obtained from composed series Yt is not equal to the sum of the seasonal adjusted
components. In this case, a natural question arises: is it ‘‘better’’ to seasonally adjust the
aggregate series (direct method) or to aggregate the seasonally adjusted sub-series (indirect
method)?

If the discrepancy between direct and indirect seasonal adjustment

Dns = Y ns ¡ (Xns
t + Zns

t )

is ‘‘negligible’’, the direct seasonal adjustment is preferable, because the seasonally adjusted
composite series is clearly of a higher quality, especially when a model-based approach is
used. Furthermore, the correlation structure between Xt and Zt can not be captured with
the indirect method, whereas modelling directly the aggregate series this problem does not
exist. Finally the seasonal adjusted series obtained by using the indirect method may still
exhibit spurious seasonality.

On the other hand, a strong difference between the direct seasonal adjusted series and
the sum of the seasonal adjusted sub-series (a large Dns) can cause confusion in the data
users.

In this paper we utilize a formal statistical test to evaluate if the discrepancy is negligible
or not. In particular, we consider the model-based approach, so that every series follows
an ARIMA model; it implies that non-seasonal and seasonal components follow ARIMA
models too. If the ARIMA model for the observed series is known, the models for the
components can be derived through the canonical decomposition (Hillmer and Tiao, 1982).2

2 This approach is followed in the seasonal adjusted routine named TRAMO-SEATS, developed by Gómez
and Maravall (1997).
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3. A Distance-based Approach

From the previous section it should be clear that the principal problem in choosing be-
tween direct and indirect methods is the evaluation of the size of the discrepancy. A natural
solution can be obtained measuring the distance between the DGP of Y ns

t and the DGP
of (Xns

t + Zns
t ). Dealing with model-based methods for seasonal adjustment, the DGP’s

can be represented by an ARIMA model, so this purpose is achieved using a dissimilarity
measure between ARIMA models. In order to obtain this measure, a useful tool is the AR
metric introduced by Piccolo (1989) and (1990).

Let Wt be a zero-mean stochastic process and F the class of ARIMA invertible processes.
It is well known that if Wt 2 F then there exists a sequence of constant f¼ig such that

1X

i=1

j¼ij < 1

and

Wt =
1X

i=1

¼iWt¡i + "t (2)

where "t » WN(0; ¾2):

Following Piccolo (1989, 1990) we define the distance between W
(1)
t ; W

(2)
t 2 F as

d(W
(1)
t ;W

(2)
t ) =

" 1X

i=1

(¼1i ¡ ¼2i)
2

#1=2

:

This distance measure can be used to compare the DGP of the direct seasonal adjusted
series and the DGP of the indirect seasonal adjusted series. Using a model based approach,
the canonical decomposition produces automatically a model for each component of the
series, so that the direct seasonal adjusted series is immediately obtained. For example, a
typical seasonal model, as the ARIMA(0,1,1)(0,1,1), produces a seasonal adjusted series
following an IMA(2,2) model.

The DGP of the indirect seasonal adjusted series can be obtained summing up the
ARIMA models relative to the seasonal adjusted sub-series. The state-space representation
and the Kalman filters can be utilized to obtain the implicit model relative to the aggregate
series. For example, let us consider two MA processes of order q1 and q2 respectively:

Xt = ³t + #1³t¡1 + : : : + #q1³t¡q1
;

Zt = ´t + µ1´t¡1 + : : : + µq2´t¡q2
;

where ³t and ´t are white noises with:

Cov (³t; ´t) = ° for t = 1; :::; T;

Cov (³t; ´s) = 0 for t 6= s:

The process Vt = Xt + Zt follows a MA(max{q1; q2}) model. In order to obtain the
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coefficients of this MA model we express the process Vt in the following state-space form:

Observation equation: Vt = a»t

State equation: »t+1= B»t+et

where:

a =
£

1 #1 : : : #q1 1 µ1 : : : µq2

¤
,

B =

2
6666664

0
(1xq1)

0 0
(1xq2)

0

Iq1 0
(q1x1)

0
(q1xq2)

0
(q1x1)

0
(1xq1)

0 0
(1xq2)

0

0
(q2xq1)

0
(q2x1)

Iq2 0
(q2x1)

3
7777775

,

»0
t =

£
³t ³t¡1 : : : ³t¡q1

´t ´t¡1 : : : ´t¡q2

¤
,

e0
t =

£
³t 0 : : : 0 ´t 0 : : : 0

¤

and 0
(hxk)

is a hxk matrix with all the elements equal to zero, whereas Ik is the identity kxk

matrix. Denoting with K the steady-state Kalman gain, defined as:

K = BPa0(aPa0)¡1; (3)

where P is the steady-state MSE matrix of the state vector »t, it can be demonstrated that
the coefficients of the MA process of Vt are (see Hamilton, 1994, chapter 13):

±j = aBj¡1K; j = 1; :::;max(q1; q2) (4)

The (3) does not imply burdensome calculations; in fact the steady-state MSE matrix is
expressed as:

P = lim
t!1

Ptjt¡1;

where
©
Ptjt¡1

ª
is the sequence of variance matrix calculated in each step of the Kalman

filter. In particular, this sequence can be calculated by:3

Pt+1jt = B
h
Ptjt¡1 ¡ Ptjt¡1a

0 ¡aPtjt¡1B
¢¡1

aPtjt¡1

i
B0+Q; (5)

where Q is the variance matrix of et (invariant with t). If B is a kxk matrix whose eigenval-
ues are all inside the unit circle and P1j0 is the initializing matrix of the sequence, satisfying:

vec(P1j0) = [Ik2 ¡ (B  B)]¡1 vec (Q) ;

it can be demonstrated that
©
Ptjt¡1

ª
is a monotonically non increasing sequence that con-

verge to:

P = B
h
P ¡ Pa0 (aPB)¡1 aP

i
B0+Q:

3 The formulas are referred to the particular state-space model used in this paper. For a general formulation,
see Hamilton (1994), chapter 13.
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In addition, if Q is strictly positive definite, the convergence is unique for any positive
semidefinite symmetric matrix P1j0. In other terms, iterating (5) we can obtain P, that
provides the calculation of (3) and (4).

So, we are able to explicit the model representing the DGP of the indirect seasonal
adjusted series, if the sub-series follow MA processes.

Now let us suppose that Xt and Zt are two AR processes of order p1 and p2 respectively:

Xt = '1Xt¡1 + : : : + 'p1
Xt¡p1 + ³t;

Zt = Á1Zt¡1 + : : : + Áp2
Zt¡p2 + ´t;

with:

Cov (³t; ´t) = ° for t = 1; :::; T;

Cov (³t; ´s) = 0 for t 6= s:

In this case, the process Vt = Xt +Zt follows an ARMA(p1+p2; max{p1; p2}) model:

°(L)Vt = ±(L)"t

where °(L) = '(L)Á(L) and ±(L)"t = Á(L)³t + '(L)´t: The coefficients of ±(L) are
obtained by (4).

Obtaining the estimates of the direct and indirect seasonal adjusted models, it is pos-
sible to calculate the Piccolo’s distance between them. If this distance is not significantly
different from zero, the discrepancy between direct and indirect methods can be considered
negligible and we can use the former; if the distance is significantly different from zero, it
is convenient to use the indirect method.

Now, the problem is to establish when the distance is not significantly different from
zero. Piccolo (1989) showed that the asymptotic distribution of d2 for an AR(p) process is a
linear combination of independent Chi-Square variables and Corduas (1996) approximated
it with a single Chi-Square distribution. Anyway, in a seasonal adjustment framework, we
are often interested to general ARMA(p,q) models. For this reason we prefer to simulate
the empirical distribution of d in the practical cases.

The procedure that we propose follows these steps:
1) seasonal adjust the aggregate series and each sub-series with the model-based pro-

cedure; the former is the direct seasonal adjusted series;
2) sum the ARIMA models relative to the seasonal adjusted sub-series, obtaining the

parameters via the (4); they are the coefficients of indirect seasonal adjusted model;
3) express the direct and indirect seasonal adjusted series in the AR form (2);
4) calculate the distance d between the two AR models; if this is significantly different

from zero use the direct method, otherwise use the indirect method.

4. An Example: the Italian Industrial Production Index

Let us consider the monthly series of the general Italian industrial production index (IPI(0))
from January 1985 to December 1999, plotted in Figure 1. This series, which presents
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a clear seasonal behavior, is obtained by weighted aggregation of the indices relative to
consumption (IPI(1)), investments (IPI(2)) and intermediate goods (IPI(3)). The weights
change with the different bases used to construct the indices and are reported in Table 1.

In order to apply our procedure, we have estimated the following model for each series:

IPI
(i)
t = ¯

(i)
TDTDt + ¯

(i)
LY LYt + ¯

(i)
EEEEt + ¯

(i)
H Ht + "

(i)
t i = 0; 1; 2; 3 (6)

where TDt is a regressor that represents the trading days effect, LYt is the leap year effect
at time t, EEt is the Easter effect and Ht is the holidays effect;4 "

(i)
t is a disturbance that

follows an ARIMA(0,1,1)(0,1,1) model:

"i
t =

³
1 + µ

(i)
1 B

´³
1 + µ

(i)
12B12

´
w

(i)
t

(1 ¡ B) (1 ¡ B12)
w

(i)
t ~IIN(0; ¾2

(i))

Using the routine TRAMO-SEATS (Gómez and Maravall, 1997), we obtain the canonical
decomposition of the model in a trend-cycle, a seasonal component and an irregular part.

The presence of deterministic effects does not affect our analysis. Calling linearized
series the series obtained subtracting from IPI

(i)
t (i =0, 1, 2, 3) the estimated deterministic

effects, we can note in Figure 2 that the discrepancy between the linearized IPI(0) series
and the aggregate linearized series is negligible.

The estimated ARIMA parameters for the three series are reported in Table 2. They
produce the following models for the seasonal adjusted series:

(1 ¡ B)2SA(0) =
¡
1 ¡ 1:4550B + 0:4724B2

¢
v(0) (7)

(1 ¡ B)2SA(1) =
¡
1 ¡ 1:5575B + 0:5770B2

¢
v(1)

(1 ¡ B)2SA(2) =
¡
1 ¡ 1:5119B + 0:5264B2

¢
v(2)

(1 ¡ B)2SA(3) =
¡
1 ¡ 1:3597B + 0:3801B2

¢
v(3) (8)

where SA(i) (i =0, 1, 2, 3) is the seasonal adjusted series for IPI(i) and v(i) is a white
noise. Summing the stationary parts of the processes relative to SA(1), SA(2), SA(3), we
obtain the estimated DGP of the indirect seasonal adjusted series:

(1 ¡ B)2SA
(0)
i =

¡
1 ¡ 1:4259B + 0:4449B2

¢
v
(0)
i .

The distance between the direct and indirect seasonal adjusted series is 0.5360. To verify
the significance of this value we have calculated the empirical distribution of the statistic
d under the null hypothesis that the distance is 0 (supposing the direct series as true). The

4 The regressors are obtained as:
TDt = # of (Mon, Tus, Wed, Thu, Fri)-#(Sat, Sun) 5

2
in the month t;

LYt =

8
<
:

0:75 if t is referred to a February in a leap year
¡0:25 if t is referred to a February in a non leap year
0 otherwise

EEt =
j
6

where j is the number of days of the month t that lies in the temporal interval:

[(date of Easter)¡ (6 days); date of Easter] ;
Ht is the number of national holidays, not coincident with Saturday and Sunday, that lies in the month t.
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Monte Carlo experiments was performed with 1000 couples of series generated under the
(7) with a variance for the white noise equal to 3:2083, that is the estimated variance of (7).

The Figure 3 plots the empirical distribution; the critical value corresponding to a 0.05
size is 16:32, so that the null hypothesis of distance zero is largely accepted. The statistical
result is confirmed from the graphic comparison of Figure 4, in which the direct and indirect
seasonal adjusted series are plotted. We are not able to distinguish the two lines because
the two series are quasi-coincident. In Figure 5 the absolute discrepancies are reported
and in Figure 6 the month-to-month percentage variations; we can note that the maximum
absolute discrepancy is less than 0.22 and that the variations are very similar for the two
series. These last considerations confirm the result of the test.

5. Final remarks

In this paper, a new approach to establish the use of direct or indirect seasonal adjustment
method was proposed. The solution is valid only in the case of additive model, because
in the case of moltiplicative model (or additive in logarithms) the approach is no longer
valid because of the impossibility to obtain analitically the model for the indirect methods.
Actually, we are looking for some approximation in this important and frequent case.

To apply the procedure we have used the Piccolo’s distance, but other measures of dis-
similarity could be used; for example, an interesting alternative is the distance between fil-
ters proposed by Depoutot and Planas (1998), that was used by Bruno and Otranto (2000)
choosing the time interval to perform the seasonal adjustment. This tool does not imply
the transformation of MA parameters in AR parameters, as in (2), with obvious advantages
from a computational point of view. Another approach could use the test proposed by Ma-
haraj and Inder (1996), who verify if two AR processes are generated from the same DGP.
They perform a set of simulations only for the AR case, with a good power and respect of
the nominal size.

The principal advantage of our method is that the choice between direct and indirect
procedure is based on difference between DGP’s and not on particular aspects of the esti-
mation procedures, as the revisions, the stability, etc.

It will be interesting evaluate the empirical size and the power of the test proposed with
Monte Carlo simulations.
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Appendix A. Tables

Table 1: Weights of the sub-series to obtain IPI(0)

Years IPI(1) IPI(2) IPI(3)

1985-1989 0:267 0:177 0:556
1990-1994 0:257 0:158 0:585
1995-1999 0:232 0:165 0:603

Table 2: Estimates of MA parameters (t-values in parentheses):

MA(1) MA(12)
IPI0 ¡0:484

(¡6:89)
¡0:660
(¡9:12)

IPI1 ¡0:598
(¡9:43)

¡0:543
(¡7:25)

IPI2 ¡0:539
(¡7:83)

¡0:679
(¡9:92)

IPI3 ¡0:387
(¡5:29)

¡0:664
(¡8:87)
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Appendix B. Figures

Figure 1: General Industrial production Index
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Figure 2: Discrepancy between direct and indirect linearized series
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Figure 3: Empirical distribution of the distance under the null hypothesis of direct=indirect
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Figure 4: Direct (continuous line) and indirect (dot line) seasonal adjusted series.
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Figure 5: Discrepancy between the direct and indirect seasonal adjusted series.
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Figure 6: Month-to-month variation with direct method (continuous line) and indirect
method (dot line)
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