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Abstract

A typical statistical problem arises when a time series consists of observations
collected with two different timing intervals. This is a frequent case in Statistical
Offices, when the frequency of their surveys changes. In these cases, the classical
tools to deal with signal extraction, such as the Hodrick-Prescott filter, are used
on the most recent homogeneous span, losing the information deriving from the
previous period. To use all the available information we exploit the fact that the
Hodrick-Prescott filter has a state-space representation in a continuous time sup-
port, which provides the possibility to deal with different spans. In this paper we
investigate the advantages of the continuous time models to extract a trend from a
time series with respect to the Hodrick-Prescott filter in presence of irregular sur-
veys. The flexibility of this model will be underlined with Monte Carlo experiments
and an application on real data.
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1 Introduction

In many situations statistical data are collected with different timing, producing time series with
different frequency. For example, a survey could be recorded with quarterly timing until the
period t and with monthly timing from period t + 1 onwards. This is a frequent situation in
data collected by National Statistical Institutes following the revision of corresponding surveys.
Clearly, the analysis of time series, in particular the extraction of a signal, such as a trend or a
cycle, is affected by the non homogeneity of data, because the classical filtering operators work
with equally spaced data. In this way, the dynamics of the period dropped in the analysis is
not considered, with the risk to lose an important set of information. The possibility to use
the complete span of observations could be guaranteed by continuous time models (see, for
example, Harvey, 1990, ch. 9); in fact, they are defined on a continuous time support and, for
their estimation, the constraint to have equally spaced observations is not required. Nevertheless,
this kind of models has not been frequently used by statisticians in their analysis. This fact
is even more surprising for one of the most frequently used method to extract a signal from a
time series, the Hodrick-Prescott (HP) filter. The filter has a model based interpretation, which
can be easily generalized to the continuous time case. This result is well known in literature.
For example, King and Rebelo (1993) show that the filter has a model-based interpretation,
considering the series observed as generated by the sum of an IMA(2,0) stochastic trend and
an orthogonal white-noise. As a result the HP filter solution is equivalent to find the minimum
mean square error estimator of the growth component gt and the cyclical component ct. Harvey
and Jaeger (1993) use the Kalman filter to obtain these estimators. Kaiser and Maravall (2001)
note that the previous specifications for the growth component and the cycle imply an IMA(2,2)
model for the overall series and obtain the HP filter as a Wiener-Kolmogorov filter, using its
properties to improve its performance.

Given a model-based interpretation, the HP filter can be expressed in a state-space form
and generalized to a continuous time support, using well-known results about the relationship
between cubic splines and state-space models (Wahba, 1978, Wecker and Ansley, 1983, Koopman
et al., 1999, Koopman and Harvey, 2003).

This specification provides the possibility to extract a signal with a method equivalent to the
HP filter in the discrete case, using data recorded with different timing. The main purpose of this
paper is an empirical evaluation of the eventual improvement obtained using the continuous time
state space model (CTSS hereafter) with respect to the HP filter used only on the homogeneous
span. This evaluation will be conducted via Monte Carlo experiments and an application on
real quarterly data, supposing that the first i years were recorded annually.

In addition, the use of a CTSS model provides the possibility to work with more flexible
models. In particular, the HP filter requires the choice of a smoothing parameter λ which “bal-
ances” the trade-off between the goodness of fit of the model to the observations and the degree
of smoothness. HP (1997) suggest to fix the smoothing parameter equal 1600 for quarterly
data; this result is obtained from empirical considerations about the U.S. quarterly GNP series
(1950:Q1-1979:Q2) and eliminates the frequencies of 32 quarters or greater, but it has been
adopted as the default value in many applications and in computer routines. This constraint is
an open problem and it has been considered perhaps the main weakness of the HP filter because
the smoothing parameter has not an intuitive interpretation (Wynne and Koo, 1997). Recently
Maravall and del Rı́o (2001) and Pedersen (2001) suggest alternative methods to calculate the
smoothing parameter, the former using the relationship between the HP filter and the Butter-



worth filter; the latter minimizing a metric in the frequency domain that compares the cyclical
component derived by HP and the cyclical component obtained by an ideal filter. Ravn and
Uhlig (2002) propose alternative methods, considering the continuous time case. From our point
of view, all these approaches have the limit to consider the smoothing parameter extraneous to
the data generating process of the observed series; in fact it is fixed or calculated in a separate
step with respect to the extraction of the components. In the continuous time formulation the
smoothing parameter is part of the data generating process of the series, in the sense that it is
present directly in the state-space representation and can be easily estimated. This consideration
is supported by Monte Carlo experiments, available on request and present in the preliminary
version of the paper.

In section 2 the relationship between the HP representation and the cubic splines is recalled:
this leads to the specification of the CTSS model. In section 3, a comparison of the HP filter and
the CTSS model is performed in terms of Monte Carlo experiments to evaluate the performance
of the two alternative models in presence of irregular surveys; in the same section, a graphical
illustration of this performance on the Italian series of workers in building sector will be provided.
Concluding remarks follow.

2 Hodrick-Prescott Filter and Cubic Splines

The filter proposed by Hodrick and Prescott (1997) has a long tradition as a method to extract
the trend (or the cyclical) signal from a time series. They suppose that an observed time series
yt (generally considered by taking logarithms) is the sum of two unobserved components: a
growth component gt and a cyclical component ct:

yt = gt + ct, t = 1, . . . , T. (1)

The purpose is to extract the trend component gt and to obtain the cyclical component as a
residual. We suppose that ct = yt − gt has zero mean in the long period. Assuming the sum of
the squares of the second difference of gt as a measure of its smoothness, a logical solution to
this problem would be to solve the minimization problem:

min
{gt}T

t=1

[
T∑

t=1

(yt − gt)
2

]

subject to the constraint:
T∑

t=1

(∇2gt

)2 ≤ ν

where ∇2 is the second order difference and ν is a known constant. This is equivalent to solve
the following unconstrained programming problem:

min
{gt}T

t=1

[
T∑

t=1

(yt − gt)
2 + λ

T∑

t=1

(∇2gt

)2

]
(2)

where λ is a positive known constant that controls the degree of smoothness of the series (the
larger the value of λ, the smoother is the series obtained). We can call this parameter smoothing
parameter.



Deriving (2) with respect to gt after simple algebra, we obtain the growth filter:

G (B) =
1

λ (1−B)2 (1−B−1)2 + 1

where B denotes the backward operator.
The specification of λ plays a crucial role in extracting the trend, but HP suggest to fix it

to 1600 for quarterly series (see section 1).
We consider the problem in a continuous time support; more specifically we suppose that the

index t in (2) varies in [α,ω] and gt is generated by a Wiener process. Of course, in application
to real time series data, there are just T observations not necessarily equally spaced; we stress
this point saying that the observation yt is recorded at time τt.

There is a correspondence between this model and smoothing polynomial splines. The
smoothing polynomial spline g(t) of degree 2m− 1 satisfies this condition (Wecker and Ansley,
1983):

min
g(t)

{
n∑

i=1

[y(τt)− g(τt)]
2 + λ

∫ ω

a

[
g(m)(t)

]2
dt

}
(3)

among all functions whose first m−1 derivatives are continuous and the m−th derivative square
integrable, with λ arbitrary; g(m) denotes the m−th derivative of the function g. It is immediate
to note that (2) corresponds to the problem of minimization in (3) in a continuous time domain
when m = 2. In other terms, the extraction of the growth component in (1) for the discrete
case is equivalent to the search of the optimal cubic polynomial spline in the problem (3) in the
continuous case (Harvey and Jaeger, 1993). Moreover, Wecker and Ansley (1983) show that (3)
can be formulated as a dynamic linear system.

Now, let us consider the linear trend component defined in a continuous time support
(Harvey, 1990):

d

dt

[
g(t)

g(1)(t)

]
=

[
0 1
0 0

] [
g(t)

g(1)(t)

]
dt + dW (t) (4)

where dW (t) → N

(
0,

[
0 0
0 k2dt

])
and W (t) is a Brownian motion. Considering the dates

τt in which the data are recorded, the corresponding discrete time state-space form for (1)-(4)
is (see Carter and Kohn, 1997, Koopman et al., 1999, section 3.4, and Koopman and Harvey,
2003, section 5.2): {

y(τt) = f ′α(τt) + c(τt)
α(τt) = Gtα(τt−1) + ku(τt)

(5)

where:

α(τt) =
[

g(τt), g(τt)(1)
]′

, f =
[

1, 0
]′

, Gt=
[

1 δt

0 1

]
,

c(τt) ∼ IIN(0, σ2
c ), and the precision parameter k is linked to the smoothing parameter λ by:

λ =
σ2

c

k2
.

.
The disturbances u(τt) = [u1(τt), u2(τt)]

′ are bivariate independent normally distributed
variables with zero mean and variance matrix:

Vt=
[

δ3
t /3 δ2

t /2
δ2
t /2 δt

]
.



Note that uncorrelated disturbances in continuous time imply correlation among corresponding
discrete disturbances.

The variable δt represents the time distance between two contiguous observations; formally
δt = τt − τt−1. Of course, when the observations are equally spaced, δt = 1 for each t.

Filtering and smoothing (5) with the well-established techniques for dynamic models (Har-
vey, 1990, ch.9), we can obtain the unobserved signal gt.

The classical HP filter, with equally spaced observations, can be seen as a particular case of
(5), constraining the first element of the vector αt to be deterministic, imposing a smooth trend.
In other terms, the model, in an extensive form, will be:

y(τt) = g(τt) + c(τt),
g(τt) = g(τt−1) + g(τt−1)(1),

g(τt)(1) = g(τt)(1) + ku(τt).

Clearly, in this case the covariance matrix V collapses to the variance of ut. As noted by
Harvey and Jaeger (1993), it is not reasonable to suppose that all the series have a smooth trend;
they support their consideration with stylized facts, so the constraint imposed in the previous
equation could be unrealistic.

3 Extracting the Signal in Presence of Irregular Sur-

veys

A particular advantage in the use of CTSS model is the possibility to consider time series
recorded with different frequency. In this case, the classical HP filter will be used only for the
homogeneous span dropping the observations at the other frequency. In the CTSS model (5), the
use of the variable δt provides the possibility to take into account this situation.1 For example,
let us suppose that the variable yt is recorded quarterly until time i and monthly from time
i + 1. In this case, the variable δt would be defined:

δt =
{

3 if t ≤ i

1 if t > i

Similarly, if the variable yt is recorded annually until the time i and quarterly, from time i + 1,
the variable δt would be defined:

δt =
{

4 if t ≤ i

1 if t > i

The extension to other irregular surveys is straightforward.

3.1 Monte Carlo Evaluation

To evaluate this property, we perform several Monte Carlo simulations, under the hypothesis
that the data are generated under the model (1). We recall that King and Rebelo (1993) show

1We are supposing that the data are referred to stock variables; the same considerations are valid for
flow variables with few modifications (see Harvey, 1990)



that the data can be seen as the sum of an IMA(2,0) model (component gt) and a white noise
(component ct). So, we can generate separately the two components by the models:

∇2gt = ε
(g)
t , ε

(g)
t ∼ NID(0, k2)

ct = ε
(c)
t , ε

(c)
t ∼ NID(0, σ2

c )

and λ = σ2
c/k2. Referring the considerations of Hodrick and Prescott (1997) about the vari-

ances of the components, we can fix the value of k2 to 1/64 and obtain the value of σ2
c in

correspondence of different values of λ. In particular, we choose the values of three different
smoothing parameters, compatible with three cycles of reference (the values are taken by Table
5 of Maravall and del Ŕıo, 2001):

1) λ = 179 for quarterly series, λ = 14400 for monthly series, which correspond cycles of
length 5.7 years;

2) λ = 1600 for quarterly series, λ = 129119 for monthly series, which corresponds cycles of
length 9.9 years;

3) λ = 6199 for quarterly series, λ = 501208 for monthly series, which corresponds cycles of
length 13.9 years.

We generate quarterly and monthly series of 10 years, using the various λ specifications;
for each simulation we generate 1000 series. We perform the following experiment: from each
series we extract the trend with CTSS using the model (5), with the correct HP filter and with
the HP filter fixing λ to the default value (we choose the most frequently used values, that
are 1600 for quarterly series and 14400 for monthly series). The use of the true λ in the HP
filter is clearly a theoretical situation, because the researcher does not know a priori it; but
this is a useful benchmark to compare the CTSS model and the HP filter with fixed λ. The
results are compared with the true trend using RMSE and Theil index; the first one would
indicate how distant from the true signal are the estimated signals, whereas the second would
stress the ability of the methods to track turning points in the series. In Table 1 the means
and the standard deviations of the indices calculated on these simulations are showed, with the
maximum likelihood estimated parameters in the CTSS procedure. The first row for each group
of simulations (t = 0) show that the performance of the CTSS model is similar to that of the
HP filter with true smoothing parameter and better of the HP with default value (a part the
case with λ generator equal 6199).

Now, we consider as annual the initial i years of the series (i = 1, 2, 3, 4, 5); in other terms
we drop the second, the third and the fourth observation of the initial i years and then estimate
the trend with the model (5), using the appropriate specification for the variable δt; then we
estimate the trend with the HP filter with the true λ and with the default value using only
the second part of the series (that with quarterly data) and compare the results, using only
the common second part of the series. The same experiment is performed using the monthly
simulated series, and considering quarterly the first i years (i = 1, ..., 5). The results are showed
in the rest of Table 1. It is interesting to note that the performance of the CTSS model is always
better then the case of HP filter with default values (a part the case of λ = 6199 with only an
annual data) and its performance becomes better then the HP filter with the true smoothing
parameter, increasing the number of irregular observations. In fact, when the first part of the
time series is annual and the second quarterly, we can note that, a part the case of brief cycles
(true λ equal to 179), is sufficient to have 2 or 3 additional annual observations to obtain a
better performance with respect to the use of the true HP filter; in the case of initial quarterly
and then monthly series, it is always sufficient that the first 2 years are quarterly to obtain



improvement in the extraction of the trend. Note also that the estimations of σc and k varies
slowly, but this is sufficient to adapt the trend to its correct dynamics.

3.2 An Empirical Illustration

As an application to compare the behavior of the two approaches, we have considered the
same experiment of the previous section on a real time series. In the quadrant a of Figure 1
is represented the Italian seasonally adjusted quarterly series of workers in building sector (I
1993-IV 2002). We have extracted the trend with the default HP filter and the CTSS model,
obtaining the profiles in quadrant b of Figure 1; let us note the similarity of the two trends,
denoting a turning point at the end of 1997- beginning of 1998. Then, we have considered as
annual data the first i years, dropping the data relative to the second, third and fourth quarters
until time i (i =1993, 1994, 1995, 1996); the trend components are estimated using only the
quarterly span for the HP filter (partial information) and both the annual and quarterly spans
for the CTSS model (mixed information). In Figures 2 and 3 the various trends extracted with
partial and mixed information are compared with the corresponding trend obtained with the
full information (that one with the complete quarterly series). It is evident that the reduced
information leads the HP filter progressively to get worse and worse, not long capturing the
turning point after that two initial years are dropped (quadrants b and d of Figure 3). Vice
versa, the CTSS model, using both the quarter and annual spans, is able to detect the curvature
of the trend, also when the data from 1993 to 1996 are considered annual (quadrant c of Figure
3).

4 Final Remarks

In this paper we have used a continuous time state space model for the extraction of unobserved
signals in time series; this approach generalizes the Hodrick-Prescott filter, using the well-known
results for cubic spline models. The main advantage of this methodology underlined in the paper
is the possibility to work with irregular surveys. Another appealing characteristic is its flexibility;
in particular we have pointed out that the smoothing parameter is estimated and not fixed, but
other aspects are relevant, such as its general form which provides the specification of structural
models for the signals. For example, a stationary ARMA structure can be hypothesized for
the dynamics of the cyclical component; another possibility would be to add a trigonometric
function to represent the cycle (see, for example, Harvey, 1989, Harvey and Jaeger, 1993). In
addition, in a similar way for the irregular surveys, the presence of the variable δt in model (5)
allows for the presence of missing data.

Our Monte Carlo experiments suggest that the CTSS approach, in the presence of irregular
surveys, approximates the true signal and performs generally better then the classical HP filter.
In particular, it is noted that the true HP filter fails when only a part of the series is used to
extract the signal, not being able to capture the turning points, whereas the CTSS model, using
the full information available, can modify the smoothing parameter, detecting turning points
also at the beginning of the homogeneous time interval. In the cases of equal data sets, the
CTSS model has a performance, in terms of detection of turning points and distance from the
true signal, very similar to that obtained with the true filter.

Note that recently many algorithms to improve the filter extraction of the CTSS model
have been developed; for example, the efficient MCMC method of Carter and Kohn (1997),



which works also dropping the Normal hypothesis about disturbances; the Koopman and Harvey
(2003) algorithm for computing implicit weights for the observations; the Koopman and Durbin
(2003) procedure for diffuse initial state-space vectors. In particular, the use of the Carter and
Kohn procedure could be very useful in the case of few observations, being based on Bayesian
procedures. We have experimented this methodology only in the application on the Italian data
in section 3.2, because for the Monte Carlo experiments the cumbersome calculations implied
by the Carter and Kohn method would be prohibitive. The results obtained are very similar
with respect to those deriving from the classical maximum likelihood method.



Tabella 1: Results of Monte Carlo experiment for several
smoothing parameters λ and irregural time series: means
of estimated σc, k, RMSE, Theil (standard deviations in
parentheses)

CTSS HP true HP default
σc k RMSE Theil RMSE Theil RMSE Theil
annual for t years and then quarterly (λ default = 1600)

λ generator=179
t=0 1.647 0.115 0.602 0.046 0.570 0.044 0.706 0.053

(0.202) (0.074) (0.175) (0.065) (0.163) (0.061) (0.218) (0.067)
t=1 1.648 0.113 0.588 0.045 0.575 0.044 0.709 0.052

(0.210) (0.074) (0.183) (0.066) (0.175) (0.064) (0.232) (0.070)
t=2 1.645 0.113 0.592 0.046 0.581 0.045 0.711 0.053

(0.222) (0.076) (0.195) (0.073) (0.188) (0.074) (0.240) (0.081)
t=3 1.645 0.114 0.596 0.047 0.588 0.046 0.706 0.054

(0.235) (0.079) (0.208) (0.083) (0.195) (0.084) (0.246) (0.090)
t=4 1.641 0.113 0.600 0.049 0.596 0.047 0.693 0.054

(0.248) (0.082) (0.220) (0.103) (0.208) (0.099) (0.246) (0.101)
t=5 1.636 0.113 0.608 0.051 0.602 0.049 0.666 0.054

(0.265) (0.087) (0.239) (0.121) (0.231) (0.113) (0.251) (0.119)
λ generator=1600

t=0 4.911 0.111 1.450 0.109 1.356 0.104
(0.581) (0.118) (0.520) (0.153) (0.495) (0.147)

t=1 4.906 0.111 1.432 0.108 1.377 0.104
(0.607) (0.128) (0.544) (0.159) (0.541) (0.156)

t=2 4.896 0.110 1.422 0.107 1.402 0.108
(0.640) (0.127) (0.580) (0.173) (0.573) (0.187)

t=3 4.896 0.112 1.426 0.110 1.430 0.111
(0.676) (0.130) (0.620) (0.203) (0.594) (0.212)

t=4 4.887 0.109 1.437 0.115 1.471 0.117
(0.709) (0.129) (0.660) (0.247) (0.642) (0.245)

t=5 4.870 0.110 1.474 0.120 1.519 0.124
(0.745) (0.141) (0.705) (0.286) (0.716) (0.308)

λ generator=6199
t=0 9.656 0.120 2.552 0.193 2.360 0.180 2.469 0.190

(1.140) (0.177) (1.045) (0.282) (0.962) (0.262) (0.986) (0.280)
t=1 9.645 0.123 2.535 0.191 2.417 0.183 2.515 0.191

(1.184) (0.198) (1.077) (0.296) (1.052) (0.283) (1.070) (0.296)
t=2 9.619 0.128 2.520 0.191 2.478 0.192 2.570 0.200

(1.252) (0.203) (1.156) (0.325) (1.137) (0.345) (1.141) (0.357)
t=3 9.625 0.128 2.518 0.195 2.567 0.202 2.635 0.207

(1.320) (0.207) (1.231) (0.376) (1.204) (0.400) (1.193) (0.408)
t=4 9.602 0.126 2.539 0.203 2.703 0.217 2.736 0.220

(1.389) (0.205) (1.293) (0.454) (1.313) (0.462) (1.305) (0.472)
t=5 9.569 0.129 2.615 0.214 2.855 0.234 2.869 0.235

(1.449) (0.233) (1.382) (0.530) (1.454) (0.596) (1.448) (0.597)



Table 1 (continued)
CTSS HP true HP default

σc k RMSE Theil RMSE Theil RMSE Theil
quarterly for t years and then monthly (λ default=14400 )

λ generator=14400
t=0 14.863 0.110 3.040 0.043 2.910 0.042

(0.976) (0.070) (0.858) (0.060) (0.803) (0.060)
t=1 14.868 0.111 2.956 0.042 2.936 0.042

(1.013) (0.074) (0.872) (0.062) (0.854) (0.063)
t=2 14.869 0.110 2.948 0.041 2.957 0.041

(1.043) (0.073) (0.940) (0.063) (0.922) (0.063)
t=3 14.883 0.108 2.956 0.041 3.009 0.042

(1.103) (0.074) (1.005) (0.061) (1.008) (0.067)
t=4 14.875 0.106 2.971 0.040 3.026 0.042

(1.168) (0.074) (1.065) (0.062) (1.053) (0.067)
t=5 14.874 0.105 2.995 0.041 3.078 0.042

(1.227) (0.076) (1.144) (0.069) (1.157) (0.072)
λ generator=129119

t=0 44.459 0.101 7.392 0.105 6.972 0.101 7.804 0.113
(2.892) (0.113) (2.656) (0.150) (2.450) (0.150) (2.460) (0.168)

t=1 44.472 0.101 7.231 0.104 7.076 0.102 7.884 0.114
(2.981) (0.118) (2.649) (0.156) (2.557) (0.159) (2.628) (0.176)

t=2 44.473 0.100 7.159 0.101 7.223 0.102 7.972 0.112
(3.079) (0.118) (2.807) (0.160) (2.784) (0.164) (2.819) (0.179)

t=3 44.496 0.099 7.139 0.099 7.366 0.103 8.122 0.114
(3.247) (0.119) (2.997) (0.159) (3.049) (0.168) (3.071) (0.191)

t=4 44.455 0.099 7.198 0.098 7.493 0.103 8.190 0.113
(3.427) (0.122) (3.192) (0.160) (3.257) (0.168) (3.201) (0.188)

t=5 44.446 0.098 7.291 0.101 7.779 0.108 8.402 0.116
(3.593) (0.120) (3.438) (0.180) (3.560) (0.198) (3.482) (0.207)

λ generator=501218
t=0 87.542 0.107 12.909 0.185 12.137 0.177 15.182 0.220

(5.682) (0.169) (5.248) (0.276) (4.875) (0.272) (4.883) (0.328)
t=1 87.560 0.110 12.724 0.184 12.378 0.181 15.339 0.221

(5.849) (0.182) (5.294) (0.293) (5.103) (0.291) (5.217) (0.344)
t=2 87.561 0.111 12.625 0.179 12.800 0.182 15.522 0.219

(6.033) (0.179) (5.554) (0.302) (5.586) (0.302) (5.586) (0.351)
t=3 87.596 0.112 12.588 0.176 13.158 0.184 15.806 0.222

(6.370) (0.181) (5.849) (0.299) (6.176) (0.311) (6.082) (0.375)
t=4 87.518 0.117 12.668 0.176 13.703 0.189 15.947 0.221

(6.754) (0.184) (6.213) (0.304) (6.639) (0.319) (6.346) (0.369)
t=5 87.508 0.115 12.871 0.181 14.588 0.204 16.391 0.227

(7.087) (0.185) (6.668) (0.344) (7.218) (0.384) (6.882) (0.406)



Figura 1: Workers in Building Sector: QI 1993- QIV 2002
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