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ABSTRACT 
 
The present work illustrates a sampling strategy useful for obtaining planned sample size for 
domains belonging to different partitions of the population and in order to guarantee that the 
sampling errors of domain estimates are lower than given thresholds. The sampling strategy that 
covers the multivariate-multidomain case is useful when the overall sample size is bounded and 
consequently the standard solution of using a stratified sample with the strata given by cross-
classification of variables defining the different partitions is not feasible since the number of strata 
is larger than the overall sample size. The proposed sampling strategy is based on the use of 
balanced sampling selection technique and on a greg-type estimation. The main advantages of the 
solution is the computational feasibility which allows one to easily implement an overall small area 
strategy considering jointly the design and estimation phase and improving the efficiency of the 
direct domain estimators. An empirical simulation on real population data and different domain 
estimators shows the empirical properties of the examined sample strategy.  
 

Key words: Planning Sampling Size of Small Domains, Controlled Selection, Balanced Sampling. 
 
 
1. Introduction 
 
The small area problem is usually considered to be treated via estimation. However, if the domain 
indicator variables are available for each unit in the population there are opportunities to be 
exploited at the survey design stage. This condition is usually met in the business survey context 
where the domain indicator variables are available in the business register. As noted by Singh et al. 
(1994), there is a need to develop an overall strategy that deals with small area problems, involving 
both planning sample design and estimation aspects. In this framework, it is crucial to control the 
sample size for each domain of interest, so that the domain is treated as a planned domain, at design 
stage, for which it is possible to produce direct estimates with a prefixed level of precision. In 
general, with a design-based approach to the inference, the presence of sample units in each domain 
allows one to compute domain estimates although not always reliably. Furthermore, in the model-
based or model-assisted approach, the presence of sample units in each estimation domain allows 
one to use models with specific small area effects, giving more accurate estimates of the parameters 
of interest at small area level (Lehtonen, et al., 2003). 
In fact, when the aim of the survey is to produce estimates for two or more partitions of the 
population, a standard solution to obtain planned sample sizes for the domains of interest is to use a 
stratified sample in which strata are identified by cross-classification of variables defining the 
different partitions. In the following, this design will be denoted as cross-classification design. In 
many practical situations, however the cross-classification design is unfeasible since it needs the 
selection of at least a number of sampling units as large as the product of the number of categories 
of the stratification variables.   
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In order to explain the problem, let us consider the population of 165 schools (Cochran, 1977, pag. 
124) reported in table 1.1. Let us suppose that the parameters of interest are the totals of a Y  
variable - related to school - separately for (i) size of city (5 categories: I,II,III,IV,V) and (ii) 
Expenditure per pupil (4 categories: A,B,C,D). Let us note the following: (i) the domains of interest 
are 9=5+4; (ii) the problem defines two distinct partitions of the population, indeed the size of city 
represents a partition of the target population in 5 non-overlapping domains, and the expenditure 
per pupil is an alternative partition in 4 domains. The standard cross-classification design defines 
20=5x4 strata by crossing the categories of the domains of the two partitions; in each stratum 
should be selected at least one school (or two schools for estimating the sampling variance without 
bias) and, consequently, according to this design, the sample size should be of 20 (or 40 schools) at 
least. If the budgetary constraints limit the sample size to 10 schools the cross-classification design 
becomes unfeasible. 
 
 
Table 1.1. Number of schools by Size of City and expenditure per pupil  

Size of Expenditure per pupil 

City A B C D 
Totals Sample 

size 

I 15 21 17 9 62 4 
II 10 8 13 7 38 2 
III 6 9 5 8 28 2 
IV 4 3 6 6 19 1 
V 3 2 5 8 18 1 

Totals 38 43 46 38 165  
Sample size 2 3 3 2  10 

Cochran (1977, pag. 124) 

 
The above background is typical of the business survey context. Indeed, the European Council 
Regulation n°58/97 on Structural Business Statistics establishes that the parameters of interest refer 
to estimation domains defined by three different partition subsets of the population of enterprises. 
As we may note by table 1.2, in Italy the total number of estimation domains is 1,821; while the 
number of non-empty strata of the cross-classification design is larger than 37,000. 
 

Table 1.2. Number of domains of the Italian Structural Business Statistics Survey by partition 
Partitions Number of domains 

Economic activity class  (4-digits of the NACE rev.1 classification)   465 
Economic activity group (3-digits of the NACE rev.1 classification) by Size class(1)   395 
Economic activity division (2-digits of the NACE rev.1 classification) by Region(1)  961 
Total number of estimation domains 1,821    
(1) Size classes are defined in terms of number of persons employed.  

            (2) Regions are 21 including autonomous provinces. 

 
 
In order to overcome some problems of cross-classification designs, an easy strategy is to drop one 
or more stratifying variables or to group some of the categories. Nevertheless, some planned 
domains become unplanned and some of them can have small or null sample size.  
Many methods have been proposed in the literature to keep under control the sample size in all the 
categories of the stratifying variables without using cross-classification design. These methods are 
generally referred to as multi-way stratification techniques, and have been developed under two 
main approaches: (i) Latin Squares or Latin Lattices schemes (Bryant et al., 1960; Jessen, 1970); 
(ii) controlled rounding problems via linear programming (Causey et al., 1985; Sitter and Skinner, 
1994). The seminal paper of Bryant et al. (1960) suggests allocating the units in the sample by 
means of a two-way Latin Square table randomly selected and two estimators of the parameter of 
interest are proposed. The method has some drawbacks that limit the application in real survey 
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contexts. For example, it implies that the expected sample counts in each stratum display 
independence between the rows and columns of the two-way table; furthermore it is not possible to 
implement the procedure when there is no population in one or more cross-classification strata. In 
order to solve these problems, Jessen (1970) proposes two approaches, both fairly complicated to 
implement and not always leading to a solution (Causey et al., 1985). As concerns the methods 
based on linear programming are concerned, Causey et al. (1985) consider the controlled multi-way 
stratification as a rounding problem solved by means of transportation theory. The method may not 
have a solution in case of three or more stratification variables. Following the linear programming 
approach proposed by Rao and Nigam (1990, 1992), Sitter and Skinner (1994) suggest a method 
based on linear programming more flexible in different situations than the method proposed by 
Causey et al. (1985) and some further computational simplification of Sitter and Skinner method 
have been suggested by Lu and Sitter (2002). Nevertheless, the main weakness of the linear 
programming approach is the computational complexity. As a consequence, the drawbacks of both 
approaches have limited the use of multi-way stratification techniques as a standard solution for 
planning the survey sampling designs.  
The sampling strategy considered in this paper does not suffer from the disadvantages of the above 
mentioned methods and allows one the control of the sample sizes for domains of interest, which 
are defined by different partitions of the reference population. Furthermore it guarantees that the 
sampling errors of domain estimates are lower than the given thresholds. 
The proposed sampling strategy is based on the use of both a balanced sampling selection technique 
(Deville, Tillé, 2004) and a greg-type estimation (Lehtonen, et al., 2003). As shown in the study on 
empirical data, the main advantages of this solution is the computational feasibility and the 
efficiency, that is the sampling errors for multidomain-multivariate case are reasonably close to 
those defined by the optimal univariate solutions. This allows one to fairly implement an overall 
small-area strategy considering jointly the design and estimation phase and improving the efficiency 
of the direct domain estimators.  
It is worthwhile to note that, if a given population partition defines a too large number of domains, 
it could happen that the budget constraints oblige to define a too large prefixed sampling errors of 
the direct estimators of the domains of the partition; in this situation, it could be necessary to adopt 
an indirect small-area estimator, in order to control the mean square errors of partition domain 
estimates. However, as briefly sketched in section 5, the indirect estimation is strengthened by the 
use of an improved direct estimator. 
The paper is organised as follows. Section 2 states the problem and introduces the essential 
notation; moreover it describes the overall sampling strategy. Section 3 shows an iterative 
procedure that defines the inclusion probabilities and the corresponding planned domain sample 
sizes solving a non linear problem where the objective function is the minimization of the overall 
sample size guaranteeing the sampling errors of domain estimates to be lower than given thresholds. 
Sections 4 and 5 illustrate two extensions of the sampling strategy. In section 4 the case in which 
the variance criterion is represented by the anticipated variance is studied. An extension to the case 
of a simple small area indirect estimator is presented in section 5. The main results of two empirical 
studies conducted both on a real population of Italian enterprises and on a simulated population are 
shown in section 6. Finally some brief conclusions are underlined in section 7.  
 
 
2. The Sampling Strategy 
 
2.1. Parameters of interest 
 
In order to define formally the problem, let us denote with U a population of N elements and with b 
a specific partition of U (b=1,…, B) in which b-th partition defines bM  different non overlapping 
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domains, bdU  (d=1,…, )bM , of size bdN  being ∑
=

=
bM

d
bd NN

1
 and, finally let∑

=
=

B

b
b QM

1
 the overall 

number of domains.  
In the table 1.1 example, b=1 when considering the partition of the population by size of the city 
and b=B=2 when considering the partition by expenditure per pupil, being 51 =M  and 42 =M . 
Continuing the example, 11U  individuates the domain, of 6211 =N  schools, having the I-th city 
size; furthermore 24U  individuates the domain, of 3824 =N  schools, having the D-th expenditure 
per pupil. 
Let kry ,  and kbd δ  denote respectively the value of the rY  (r = 1,…,R) variable of interest in the 

k-th population unit and the domain membership indicator, being 1=kbd δ  if  bdUk ∈  and 
0=kbd δ , otherwise. Let us suppose that the kbd δ  values are known for each unit in the population. 

The parameters of interest are the QRM ×=  domains totals 
 
 ∑∑

∈∈
==

bdUk
krkbd

Uk
krrbd yyt ,, δ  (r = 1,…,R ; b=1,…, B; d=1,…, bM ). (2.1.1) 

  
The expression (2.1.1) defines a multivariate-multidomain problem since there are R variables of 
interest (multivariate aspect) and 1>Q domains (multidomain aspect). 
 
 
2.2. A concise description of the sampling strategy 
 
Let us suppose that, in order to estimate the rbd t  parameters, a sample s of fixed size n is selected 
from population U, with inclusion probabilities kπ ( Uk ∈ ). Let bdbd Uss ∩=  denote the sample 

of bdn  units belonging to the bdU  domain (with∑
=

=
bM

d
bd nn

1
), being  

 ∑ ∑
∈ ∈

==
bd bdUk Uk

kkbdn πλ ,        (2.2.1) 

 
with 1=kλ  if k∈ s and 0=kλ  otherwise. 
The sample is selected by a multi-way stratification technique developed under the balanced 
sampling framework guaranteeing that the selected sample respects the following balancing 
equations 
 
 zz tt ht =,ˆ           (2.2.2) 
 
where ∑

∈
=

Uk
kkkht at λzz,ˆ  denote the Horvitz-Thompson estimates of ∑

∈
=

Uk
kt zz , being  kz  a 

vector of auxiliary variables known for each population unit and kka π/1= . A suitable 
specification of the kz vectors can assure that the realized sample sizes, bdn , are equal to fixed 
quantities known in advance, as described in section 2.3. 
The estimates of rbd t , denoted with gregrbd t ,ˆ , are obtained with the modified greg estimator (Rao, 
2003, page 20), given by (see section 2.5): 
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∑
∈

=
sk

krkbdgregrbd ywt ,,ˆ         (2.2.3) 

where:   

 kkkkk
sk

kkhtbdbdkbdkkbd cacattaw /)/()ˆ(
1

, xxxxx

−

∈ 












′′−+= ∑δ  

 
denote the sampling weights, kx  indicates a vector of auxiliary variables, kc  is a known constant, 
being ∑

∈
=

bdUk
kbd t xx and k

sk
khtbd at

bd
∑
∈

= xx,ˆ . The estimator (2.2.3), also known as survey 

regression estimator (Battese, Harter and Fuller, 1988), may be derived under the following 
working superpopulation model 

  
krrkkry ,, ε+′= βx           (2.2.4) 

 
where rβ  denotes an unknown vector of fixed regression parameters and kr,ε  is the random 
residual. The model expectation, mE , and model variances, mV , are respectively given by   

0)( =krmE ε ; 2
, )( rkkrm cV σε =  ; 0),( ,, =irkrmE εε if  ik ≠ . 

The approximated sampling variance of the modified greg estimator under balanced sampling is: 
 

∑
∈









−

−
==

Uk
krbd

k
htgregrbdp QN

NtttV 2
,,, 11)ˆ|ˆ( η

πzz ,    (2.2.5) 

 
being 

 





∈′−
∈′−

=
dbbdk

bdbdkkr
krbd Uk

Uk
for
for

,

,,
,

ε

εε
η

z

z

Bz
Bz

, 

 
with 









−






















−′= ∑∑

∈

−

∈
1111

,

1

,
k

kbdkr
Uk

k
k

k
Uk

kbd π
δε

πε zzzBz  , 

 
where dbU  is the subset of U complementary to bdU . A proof of (2.2.5) is given in section 2.5.  
The inclusion probabilities, kπ , and the domain sample sizes, bdn , are determined with a procedure 
which attempts to minimize the overall sample size, n, guaranteeing that the sampling variances 

)ˆ|ˆ( ,, zz tttV htgregrbdp =  are lower than prefixed level of precision thresholds, rbdV : 
 

rbdhtgregrbdp VtttV ≤= )ˆ|ˆ( ,, zz     (b=1,…, B; d =1,…, bM ; r=1,…,R) 
 
The technical details are described in section 3.  
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2.3. The Balanced sampling for marginal stratification 
 
Multi-way stratification designs can be treated in the context of the balanced sampling. 
The definition of a balanced sample depends on the assumed inferential framework. In the model 
based approach, a sample is defined as balanced on a set of auxiliary variables if there is the 
equality between the sample and the known population means of the auxiliary variables (Royall and 
Herson, 1973; Valliant  et al., 2000). Following the design based (or model assisted approach) 
considered in this paper, a sample is balanced when the Horvitz-Thompson estimates of the 
auxiliary variables totals are equal to their known population totals (Deville and Tillé, 2004). 
For defining the balanced sampling in the design or model assisted approach, let us introduce the 
general definition of sampling design as a probability distribution p(.) on the set S of all the subset s 
of the population U such that ∑ ∈ =Ss sp 1)( , where p(s) is the probability of the sample s to be 

drawn. Each set s may be represented by the outcome )...,,...,,( 1 Nk λλλ=′λ of a vector of N 
random variables. Let )( 1 Nk ,...,,..., πππ=′π  be  the vector of inclusion probabilities, where 

∑ ∈== Ssp spE λλπ )()( , being )(⋅pE  the expected value over repeated sampling. Let 

)( 1 Qkhkkk z,...,z,...,z=′z  be a vector of Q auxiliary variables available for each population unit. The 
sampling design p(s) with inclusion probabilities π  is said to be balanced with respect to the Q 
auxiliary variables if and only if it satisfies the balancing equations given by (2.2.2) for all s∈ S such 
that p(s)>0. 
Let us suppose that a vector of inclusion probabilities π , consistent with the marginal sampling 
distributions  bdn  (b=1,…, B; d=1,…, bM ), is available, that is  

 
∑
∈

=
bdUk

kbdn π       (b=1,…, B; d=1,…, bM ) .         (2.3.1) 

 
Multi-way stratification design represents a special case of balanced design where for unit k the 
auxiliary variable vector is given by 

 

),...,,...,()0,...,,...,0,...,0,...,,...,0( 11

1

kBMkbdkk
Q

Bb

k

b

kk B
δδδπππ ==′

==

4444 34444 21

4847648476
z .    (2.3.2) 

 
The expression (2.3.2) defines the kz as vectors of (Q-B) zeros and with B entries equal to kπ  in the 
places indicating the domains which the unit k belongs to. When defining the kz  vector as (2.3.2), 
if condition (2.3.1) holds, the selection of sample satisfying the system of balancing equations 
(2.2.2), ∑∑

∈∈
=

Uk
kkk

Uk
k zz πλ /)( , guarantees that the bdn  values are non random quantities. 

Referring to the bd-th domain,  the left hand-side of the balancing  equation (2.2.2) is  
  

bd
skUk

kkk
Uk

kbdk n
bdbd

=== ∑∑∑
∈∈∈

1/)( λπλδπ , 

 
while the right hand-side is  
 



 9

 bd
Uk

k
Uk

kbdk n
bd

== ∑∑
∈∈

πδπ . 

   
One relevant drawback of balanced sampling has always been implementing a general procedure 
giving a multivariate balanced random sample (see Valliant et al., 2000). Deville and Tillé (2004) 
proposed the cube method that allows one the selection of balanced (or approximately balanced) 
samples for a large set of auxiliary variables and with respect to different vectors of inclusion 
probabilities. In particular, Deville and Tillé (2000) show that with specification (2.3.2) of the kz  
vectors, the balancing equations (2.3.3) can be exactly satisfied. A free SAS (version 9) software 
code for the selection of balanced samples for large data sets may be downloaded in the website 
http://www.insee.fr/fr/nom_df_met/outils_stat/cube/accueil_cube.htm.  
 
 
2.4. The modified direct greg estimator  
 
Following Lehtonen et al. (2003), the estimator (2.2.3), may be expressed under the general form  
 
 
  ∑∑

∈∈
−+=

bdbd sk
krkrk

Uk
krgregrbd yyayt )~(~ˆ ,,,,                                      (2.4.1) 

 
where kry ,

~  denotes the prediction of kry ,  under the assumed superpopulation model. The 
predictions { kry ,

~ ; }Uk ∈  differ from one model specification to another, depending on the 
functional form and from the choice of the auxiliary variables.  The estimator (2.2.3), is derived 
under the working superpopulation model (2.2.4). The predictions kry ,

~ are then obtained by 
 
  rkkry βx ˆ~

, ′=  ,            (2.4.2) 
 
being  

  )/()/(ˆ
,

1

kkkr
sk

kkkk
sk

kr cayca ∑∑
∈

−

∈ 










′= xxxβ .     (2.4.3) 

 
Let us observe that the linear model (2.2.4) allows us to define the estimator only knowing the 
domain totals of the auxiliary information and the kx  values for the sampling units. However, 
knowing the kx  values for every Uk ∈ , it is possible to build an estimators with more efficient 
predictions kry ,

~  obtained by generalised linear models (Lehtonen and Veijanen, 1998) or non 
parametric regression techniques (Montanari and Ranalli, 2003). 
As noted by Rao (2003, pag. 20) the estimator (2.2.3) is approximately design unbiased as the 
overall sample size increases, even if the domain sample size bdn  is small; furthermore it may also 
be viewed as a calibration estimator (Singh and Mian, 1995) with weights kbd w  minimizing a chi-

squared distance  kkbd
sk

kbdkk awac /)( 2∑
∈

−δ  subject to the constraints xx tw bd
sk

kkbd∑
∈

= .  
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The sum of the gregrbd t ,ˆ  estimates over all the domains of a partitions is benchmarked to the usual 

greg estimate of the total, gregrgregrbd

M

d
tt

b

,,
1

ˆˆ =∑
=

, being 

 
 ]/))/(()(1[ˆ 1

,, ∑ ∑∑∑
∈

−

∈∈∈
′′−+=

sk
kkkkk

sk
kk

sk
k

Uk
kkkrgregr ccaaayt xxxxx .  

 
 
2.5. Sampling variances 
 
In order to derive the expression of the variance (2.2.5), consider the result given in expression (7) 
of Deville and Tillé (2005), which takes into account the Horvitz-Thompson estimator 

∑
∈

=
sk

kkrhtr ayt ,,ˆ  of the total ∑
∈

=
Uk

krr yt , . This result states that, under balanced sampling, a good 

approximation of the sampling variance of the htrt ,ˆ  estimator is given by  
 

=−=′−+== )ˆˆ())ˆ(ˆ()ˆ|ˆ( ,,,,,,,, yhthtrpyhthtrphthtrp tVtVtV zzzzzzz BtBtttt  

∑∑
∈∈

′−







−

−
≅′−=

Uk
ykkr

k
yk

sk
krkp y

QN
NyaV 2

,,,, )(11))(( zz BzBz
π

,   (2.5.1) 

where 









−






















−′= ∑∑

∈

−

∈
1111

,

1

,
k

kr
Uk

k
k

k
Uk

ky y
ππ

zzzBz .     (2.5.2) 

    
Let us consider, now, the linear approximation, *

,ˆ gregrbd t , of the greg estimator, the derivation of 
which may be obtained according to Särndal et al. (1992, pages 450-451) 
  

kbd
sk

krkr
Uk

k
sk

krkr
Uk

kgregrbdgregrbd aatt
bdbdbd

δεε ∑∑∑∑
∈∈∈∈

+′=+′=≅ ,,
*
,, ˆˆ βxβx . 

   
On the basis of expressions (2.5.1) and (2.5.2), it is possible to derive the following result 

 
==≅= )ˆ|ˆ()ˆ|ˆ( ,

*
,,, zzzz tttt htgregrbdphtgregrbdp tVtV  

==+′= ∑∑
∈∈

)ˆ|( ,, zz ttβx htkbd
sk

krkr
Uk

kp aV
bd

δε  

=== ∑
∈

)ˆ|( ,, zz tt htkbd
sk

krkp aV δε  

=′−+= ∑
∈

))ˆ(( ,,,, εδε zzz Btt bdhthtkbd
sk

krkp aV  

=′−= ∑
∈

)(( ,, εδε zBz bdkkbd
sk

krkp aV  

∑∑
∈∈









−

−
≅=

Uk
krbd

ksk
krbdkp QN

NaV 2
,, 11)( η

π
η . 
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The approximated sampling variance of rgregbd t̂  depends on the residuals of the whole set of units, 
because of balanced selection. Therefore, the units not belonging to bdU  have an influence on the 
sampling variance of the estimator.  
Let us examine now the univariate unidomain case and assume that the survey has an unique target 
parameter, rbd t . Let us suppose furthermore that the selected sample respects the balancing 
equations, zz tt =ht,ˆ , being fixed the overall sample size n. 
It is trivial to demonstrate that, in this sampling context, each unit k could be selected with ( RQ × ) 
different optimal inclusion probabilities, krbd ,π&&  (b=1,…, B; d=,…, bM ; r=1,…, R) 

 

∑
∈

==
Ui

irbdkrbdkrbdk n ,,, ηηππ && .              (2.5.3) 

 
If the balanced sample is selected using the probabilities krbd ,π&& , the approximated variance  

)ˆ|ˆ( ,
*
, zz tt =htgregrbdp tV  reaches its minimum value, *

|nrbdV , expressed by  
 

 ∑∑
∈∈

−









=≥=

Uk
krbd

Uk
krbdnrbdhtgregrbdp n

VtV 2
,

2

,
*
|,,

1)ˆ|ˆ( ηηzz tt .          (2.5.4) 

 
Let us finally underline that in Tillé and Favre (2005) is given a criterion for obtaining a prediction 

krbd ,η̂  of the krbd ,η  values, that may be used in repeated sampling contexts.  
 
 
3. Sampling algorithms for the determination of the sample sizes 
 
The inclusion probabilities kπ  and the derived domain sample sizes, ∑

∈
=

bdUk
kbdn π , are obtained 

with a two phase procedure: (i) in the first phase, denoted, as optimization, the preliminary inclusion 
probabilities, kπ′ , are determined solving a minimum constrained problem; (ii) in the second phase, 
denoted as calibration, the inclusion probabilities, kπ , are obtained as a slight modification of the 

kπ′ ; the calibration problem is implemented for assuring that the domain sample sizes bdn  are 
integers. 
As illustrated in the following, the kπ  values may be expressed as implicit functions of the 

unknown residuals 2
,krbdη . But, in real survey context, the determination of the inclusion 

probabilities kπ  may be done using the predictions 2
,ˆ krbdη  instead of 2

,krbdη . This is a general 
problem concerning the phase of planning the sampling designs, because the variances are generally 
unknown quantities that may be suitably estimated. In repeated survey contexts the effect of using 
the estimates 2

,ˆ krbdη  as a replacement for 2
,krbdη may be tested by computing the sampling 

variances after the data collection phase. The empirical results may then be used for introducing 
proper adjustments in planning the next survey design. However, as illustrated in empirical analysis 
of section 6, the proposed strategy seems to be efficient and sufficiently robust with respect to small 
departures of ideal conditions. 
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3.1. Optimization 
   
The inclusion probabilities kπ′  can be defined as solution of the following non linear programming 
problem with N unknowns , kπ′ , and  )( RQN ×+  constraints 
 

















=≤′<

===≤







−

′−











′

∑

∑

∈

∈

),...,1(10

),...,1;,...,1;,...,1(11 2
,

Nk

RrMdBbV
QN

N

Min

k

b
Uk

rbdkrbd
k

Uk
k

π

η
π

π

.       (3.1.1) 

 
A numerical solution to (3.1.1) may be derived considering the algorithms developed for the 
multivariate allocation in stratified surveys. Such algorithms allow one to find the unknown values 

0>hv  (h=1,2…) which represent the solution of the following non linear problem 









∑
h

hMin ν  

under the constraints r
h

hrh AA ≤∑ ν , where rhA  and rA  (r=1,2,…) are known positive quantities. 

Bethel (1989) invokes the Khun-Tucker theorem to show that there exists a solution to the above 
problem. He describes a simple algorithm and discusses its convergence properties. Chromy (1987) 
develops an algorithm, which is suitable for automated spreadsheets, but does not prove his 
algorithm always converges. A slight modification of the Chromy’s algorithm – able to solve the 
problem (3.1.1) guaranteeing the inequalities ),...,1(10 Nkk =≤′< π  are respected – is described 
herein in the following. After the Initialization, the algorithm finds the kπ′  values by iterating the 
two actions of Calculus and Check. 
 
 
Initialization  
 
Let τ ( ,..)2,1,0=τ   denote the generic iteration. At initial iteration ( 0=τ ), set 1=kγτ  (k=1,…,N). 
 
 
Calculus 
 
The generic iteration ( ,...2,1=τ ) develops the Chromy’s algorithm and consists of a sequence of 
steps. The index u (u=0,1,…) - after a comma on the right of the iteration index, τ - denotes the 
generic step.  

 At initial step ( 0=u ), set 1, =r
u

bd φτ (for b=1,…,B; d=1,…, bM  ; r=1,…,R) and calculate  
 

∑
∈−

=
Uk

kkrbdrbd QN
NV γη ττ 2

,0 . 

 
 At subsequent steps (u=1,2,…), calculate the k

uπτ ,  values using the following equation 



 13

 
2/1

1 1 1

2
,

,, )1(












−
+−= ∑ ∑ ∑

= = =

B

b

M

d

R

r
krbdr

u
bdkkk

u
b

QN
N ηφγγπ ττττ .    (3.1.2) 

 
Calculate, furthermore  
 

∑
∈−

=
Uk

kkrbd
k

ur
u

bd QN
NV γη

π
τ

τ
τ 2

,,
, 1 ,  and  rbdr

u
bdr

u
bd VVV 0

,, τττ +=′ .   (3.1.3) 

 
 If  the following two conditions are respected  for all b=1,…,B; d=1,…, bM  ; r=1,…,R: 

  

rbdr
u

bd VV ≤′,τ   and 0)( ,, =−′ rbdr
u

bdr
u

bd VVττ φ ,      (3.1.4)  
 
then the action of Calculus stops and the inclusion probabilities kπτ  are those calculated in 

equation (3.1.2). Otherwise, the updated quantities r
u
bd φτ 1, +  are computed 

 
2,,,1, )]/([ rbdr

u
bdr

u
bdr

u
bdr

u
bd VVV τττττ φφ −′=+        (3.1.5) 

 
and the equations (3.1.2) and (3.1.3) are calculated at u+1,  over and over again with r

u
bd φτ 1, +  

replacing r
u

bd φτ ,  until conditions (3.1.4) are respected. 

 
 
Check 
  
If  the condition 1≤kπτ  is true for all k , then the algorithm stops and the kπ′  values are set equal 

to kk ππ τ=′ . Otherwise the kγτ  values are updated as  
 







>

≤
=+

1if0

1if11

k
τ

k
τ

k
π

π
γτ  .        (3.1.6) 

 
The calculus is iterated at  1+τ  with kγτ 1+  replacing kγτ . 
The SAS macro that allows one to solve the problem (3.1.1) has been developed by the authors of 
this paper and may be released on demand. 
 
 
3.2. Calibration 
 
The quantities bdn  are defined, first, by rounding the results of the Q sums ∑

∈
′

bdUk
kπ  (b=1,…,B; 

d=1,…, bM ). Sometimes a further data manipulation could be necessary in order to assure the 
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condition nnn
bb M

l
lb

M

d
bd == ∑∑

′

=
′

= 11
, for each bb ′≠ . The probabilities kπ  are then obtained as solution 

of the following calibration problem 
 
















=

=











′

∑

∑

∑

∈

∈

∈

1-11

);(

bbd
Uk

k

Uk
k

Uk
kk

,…, M,…,B; d=b=n

n

GMin

bd

π

π

ππ

,             (3.2.1) 

 
where, );( kkG ππ ′ is a distance function between kπ  and kπ′ . Note that (3.2.1) may be solved by 
the well known IPF (Bishop et al., 1975) or GIPF (Dykstra (1985); Dykstra and Wollan, (1987)) 
procedures. The logarithmic distance function )()/ln();( kkkkkkkG πππππππ ′+−′=′  avoids to 
define the kπ  probabilities lower than 0, while GIPF prevents to obtain kπ  values larger than 1. 
 
 
4. The anticipated variance 
 
A frequently used criterion for planning the sampling strategies is that of controlling the anticipated 
variance, which may be defined as: 
 

== )ˆ|ˆ( ,, zz tttAV htgregrbd pm EE 2
,, )ˆ|ˆ( zz tttt htrbdgregrbd =− .           (4.1) 

 
The following result may be derived under the assumptions of the model (2.2.4) and using the 
results given in section (2.5): 

 
          ==≅= )ˆ|ˆ()ˆ|ˆ( ,

*
,,, zzzz tt htgregrbdpmhtgregrbd tVEtttAV  
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being  
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where: ( ) 111
1 ),...,,...,( −−− ′′′=′= UUUUUkkkNkjk ggg ΩZZΩZzg , { } N

kkU col 1=′= zZ  denotes the ( QN × ) 

matrix of kz′  , { } N
kkU diag 1

1 1/1 =
− −= πΩ . The (4.2) has been obtained under the following two results 

 

( ) ( ) kUUUUUrbdUUUUUkrbdkmE zZΩZZΩVΩZZΩZzBz z
11111122

, )(
−−−−−− ′′′′=′ σε = 

    k
Uj

kjrkrbdkr cgV
bd
∑

∈
=′= 222 σσ gg , 

( ) =′ εε ,, zBz bdkkrmE  

( ) =′′′′= −−− )),...,,...,(( ,,11,,
111

NbdNrkbdkrbdrNkrmUUUUUk E δεδεδεε IΩZZΩZz

 kbdkkkr cg δσ 2= ,  
 
where  { } N

kkbdkrbd cdiag 1== δV ,  and { } N
kN diag 11 ==I .  

The result (4.2) shows that it is possible to define a sampling strategy which aims at controlling the 
anticipated variances. Indeed, if the quantities 2

,kr
a

bd η  (or their proper predictions 2
,ˆ kr

a
bd η ) are used 

as a replacement for the residuals 2
,krbdη , the problem (3.1.1) defines a sampling design which 

allows one to guarantee the following conditions that rbdhtgregrbd VtttAV ≤= )ˆ|ˆ( ,, zz  (b=1,…,B; 
d=1,…, bM ; r=1,…,R). 
An interesting result is the following. In the special case of a single partition, if the inclusion 
probabilities, kπ , and the etheroschedastic factors, kc , are quite constant in each domain, then the 
selection of a balanced sample decreases the anticipated variance. This result is demonstrated in 
Appendix 1.  
 
 
5. Brief extension to the case of a simple small area indirect estimator 
 
If a given population partition defines a too large number of domains, it could happen that the 
budget constraints oblige to define a too large prefixed sampling errors of the direct estimators of 
the domains of the partition; in this situation, it could be necessary to adopt an indirect small-area 
estimator, in order to control the mean square errors of partition domain estimates. Herein in the 
following we will show as the sampling strategy, described in sections 2 and 3, may be extended to 
the case of a simple small area indirect estimator. Let us consider the enough general case in which 
the vector kx of the auxiliary covariates has an intercept, such as ∑

∈
=

bdsk
kbdbd wN .  

Let b&&  denote the partition for which it is necessary to adopt a small area indirect estimator and let 
us consider the model (7.1.1) described in Rao (2005, pag. 116). In the herein studied context, for 
the domains of the thb −&&  partition, this model may be defined as  
 

rdbrdbdbrdbdbgregrdbgregrdb uvhNtt &&&&&&&&&&&&&& ++′== φa/ˆˆ
,, (d=1,…, ),...,1; RrMb =&&           (5.1) 

 

where adb&&  is a p×1 vector of area level covariates, rφ is an unknown p×1 vector of regression 

coefficients, hdb&& is a known quantity related to the thdb −&&  domain, rdb v&&    iid  ),0( 2
νσ rb&&  



 16

independent of the sampling error rdb u&&      approximately ind  ),0( 2
trdb σ&& , being  

2
,,

2 /)ˆ|ˆ( dbhtgregrdbptrdb NtttV &&&&&& zz ==σ .   For known 2
νσ rb&&  and 2

trdb σ&&  values, the BLUP estimator of 

rdb t&&  is  
 
 (ˆ , dbbluprdb Nt &&&& = )ˆ)1(ˆ

, rdbrdbgregrdbrdb t φa′−+ &&&&&&&& γγ              (5.2) 
 
being  

)/( 22222 hh dbrbtrdbdbrbrdb &&&&&&&&&&&& νν σσσγ +=  and               (5.3) 
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222 )(ˆ)(ˆ νν σσσσ aaaφ       (5.4) 

 
The MSE of the BLUP estimator  is  
 

=)ˆ( ,bluprdb tMSE &&      
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d
dbrbtrdbdbdbdbrdbtrdbrdb

b

db
hN &&&&&&&&&&&&&&&&&&&&

&&

&&

1

1

222222 )()1( νσσγσγ .   (5.5) 

 
Looking at expressions (5.5) and (5.3), it is possible to note that for a given values of the variance  

2
νσ rb&&  , it is possible to control the )ˆ( ,bluprdb tMSE &&  in the sampling design phase, by defining a 

proper value of the variance 2
trdb σ&& . The following iterative procedure finds the kπ′  inclusion 

probabilities which guarantee the minimum sample size and assure the respects of the following 
constraints ( )∑

∈
≤−−

Uk
rbdkrbdk VQNN 2

,1/1)/( ηπ  (for bb &&≠ ; d=1,…, ),...,1; RrMb =  and 

rdbbluprdb VtMSE &&&& ≤)ˆ( ,  (d=1,…, ),...,1; RrMb =&& .  
 
 
Initialization  
 
Let j ( ,..)2,1,0=j  denote the generic iteration. At initial iteration ( 0=j ), set 1=r

j
db eff&&  

(d=1,…, bM && ; r=1,…,R). By means of the algorithm described in section (3.1), find the k
jπ′  

inclusion probabilities, solution of the problem (3.1.1), using the r
j
dbkrdbkr

j
db eff&&&&&&

2
,

2
, ηη =  

(d=1,…, bM && ; r=1,…,R; k=1,…,N)  as replacement for the  2
,krdb η&&  values. 

 
Iteration  
 
The generic iteration ( ,...2,1=j ) is articulated as follows. 

− Calculate ∑
∈

− −−=
Uk

krdbk
j

dbtr
j
db

QNNN 2
,

122 ]1)/1[())]((/[ ηπσ &&&&&&  (d=1,…, bM && ; r=1,…,R). 
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− Calculate r
j
db γ&&  and )ˆ( ,bluprdb

j tMSE &&  (d=1,…, bM && ; r=1,…,R) respectively by means of 

equation (5.3) and (5.5) by using the sampling variances 2
tr

j
db σ&&  instead of 2

trdb σ&& . 

− Calculate 2
, /)ˆ( tr

j
dbbluprdb

j
r

j
db tMSEeff σ&&&&&& = ; 

− Find the k
jπ′  inclusion probabilities, solution of the problem (3.1.1), using the 

r
j
dbkrdbkr

j
db eff&&&&&&

2
,

2
, ηη =  (d=1,…, bM && ; r=1,…,R; k=1,…,N)  as replacement for the  2

,krdb η&&  
values. 

 
 
Check 
 
If the following condition is satisfied, for a small quantity v,  
 
 vk

j
k

j

Uk
≤−−

∈
∑ || 1 ππ ,                 (5.6) 

 
then the algorithm stops and the inclusion probabilities kπ′  are those calculated at iteration j. 
Otherwise, the iteration is calculated over and over again until condition (5.6) is respected. 
 
 
6. Empirical Analysis 
 
In order to verify the empirical properties of the proposed sampling strategies, two experiments 
have been implemented, the first one is on artificial data, the second experiment is based on a 
simulation on real enterprise data. In the experiment on artificial data the whole sampling strategy 
proposed in section 2 is implemented including the allocation phase described in section 3. The 
simulation on real enterprise data adopts a simplified allocation rule that may be easily implemented 
in real survey contexts but is different from that optimal described in section 3. Both experiments 
have showed good performances of the proposed strategy.  
 
 
6.1. Artificial data 
 
An artificial population U with 1,813 units has been created to evaluate different sampling 
strategies. Two categorical variables have been created: 1U  with 5 categories (1,…,5) identifying 
the 5 domains dU1  of the first partition and 2U  with 10 categories (1,…,10) identifying the 10 
domains dU2  of the second partition. The values ku ,1  and ku ,2 of the variables 1U  and 2U  have 
been assigned to each unit in the population, generating a contingency table, assuming the 
categorical variables are independent. The contingency table (table 6.1.1) has skewed marginal 
distributions, where the marginal frequencies decrease as the levels of 1U  or 2U  increase. For each 
unit k, the auxiliary variable kx  has been created drawing from the normal distribution 

N( +30 5
,2

3
,1 ; kk uu ).  

 
 



 18

Table 6.1.1. Contingency table of artificial population and marginal sample sizes of the 
multi-way stratified balanced sampling  

 Partition 2 Totals Sample size
Partition 1 1 2 3 4 5 6 7 8 9 10  
1 316 203 154 86 62 35 29 18 15 7 925 12
2 151 94 80 46 32 15 12 6 8 4 448 11
3 84 52 40 25 20 12 7 5 3 0 248 9
4 47 31 20 14 7 5 4 3 0 1 132 6
5 19 11 11 4 5 4 2 2 1 1 60 4
Totals 617 391 305 175 126 71 54 34 27 13 1,813 
Sample size 11 7 6 5 3 3 2 2 2 1  42

 
The variables of interest, 1Y , has been generated with the following superpopulation model 

 
kkk xy ,1,1 35.0 ε+=            (6.1.1) 

 
with 0)( ,1 =kmE ε , 0)( ,1,1 =lkmE εε , for lk ≠  and kkm xV 5.1)( ,1 =ε . 
 
Seven sampling designs, as reported in table 6.1.2, have been compared. The BAL design is the one 
described in the paper. The marginal sample size have been defined with the procedure described in 
section 3, assuring that the percent Coefficient of Variation (CV) of the first and second partition 
domain estimates are lower than 14% and 21% respectively: with the symbols of section 3, it is 
( ) 141001111 =tV dd  (d=1,…,5) and ( ) 211001212 =tV dd (d=1,…,10). 
The overall sample size, n, is 42 units and the marginal distributions are shown in table 6.1.1. The 
marginal sample sizes of each partition are then adopted for the four one-way stratified design, 
OPT1, OPT2, STDOM1 and STDOM2, where the inclusion probabilities are described in table 
6.1.2. The overall sample size n has been used to define the Simple Random Sampling Without 
Replacement and Probability Proportional to Size Sampling sampling designs. 
  
Tab. 6.1.2. Sampling designs 

 Sampling Design Abbreviation Inclusion Probability 
 Multi-way stratification with balanced sampling BAL Defined in section 3 

Stratified by Partition 1 with Optimal inc. prob. for Partition 1 OPT1 ( )∑ ∈=
dUk kkdk xxn

1
/1π  

Stratified by Partition 2 with Optimal inc. prob. for Partition 2 OPT2 ( )∑ ∈=
dUk kkdk xxn

2
/2π  

Stratified by Partition 1 with SRSWOR* with in each stratum STDOM1 ddk Nn 11 /=π  O
ne

 –
w

ay
 

str
at

ifi
ca

tio
n 

Stratified by Partition 2 with SRSWOR* with in each stratum STDOM2 ddk Nn 22 /=π  
 SRSWOR* SRS Nnk /=π  

 Probability Proportional to Size Sampling PPS ( )∑ ∈= Uk kkk xxn /π  
*SRSWOR: Simple Random Sampling Without Replacement 
 
Knowing all the population values, the sampling variances )ˆ( ,1 gregbdp tV  have been computed for 
each domain estimate for the modified greg estimator (2.2.3) based on the model (6.1.1). For the 
BAL design the variance has been calculated according to the expression (2.2.5), while the standard 
textbooks expression for the other designs has been adopted. Table 6.1.3 shows the mean values and 
maximum values of the percent CV by sampling design and partition, being the CV defined as 

1,1 /)ˆ( ttV bdgregbdp . Furthermore, the same mean and maximum CV values have been computed 

considering the overall set of 15 marginal domains. 
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Table 6.1.3 Mean and maximum values of the percent CV by sampling design and partition  

 Mean   Max  
Partition Partition 

 
Sampling Design 

1 2 Overall 1 2 Overall 

BAL 13.6 20.0 16.8 14.1 21.5 21.5 
OPT1 16.6 28.4 22.5 17.5 38.7 38.7 
OPT2 18.7 24.0 21.4 21.5 27.7 27.7 
STDOM1 17.7 35.4 26.5 19.0 67.2 67.2 
STDOM2 21.1 25.3 23.2 26.7 30.0 30.0 
SRS 21.5 33.0 27.3 27.7 55.4 55.4 
PPS 18.3 26.6 22.5 20.8 36.3 36.3 
 
The empirical results stress the efficiency of the proposed BAL sampling strategy with respect to 
the remaining strategies. In particular, we note the unexpected finding that BAL strategy has better 
performance in each partition with respect to the one-way optimal stratification design (OPT1 for 
partition 1 and OPT2 for partition 2). This may be explained by the fact that the BAL strategy 
exploits the auxiliary information, related to the domain membership, both at design and estimation 
phases; while the other strategy use these auxiliary variables just at the estimation phase. 
Finally, in order to test the sensitivity of the BAL strategy, we examined the sampling variances of 
the domain estimates of the total of other variables ( 2Y , …, 12Y ), reported in table 6.1.4, 

considering the sampling allocation based on 1Y  and the modified greg estimator based on the 
assumption of the hetheroschedastic factor of the model (6.1.1).   
 
Table 6.1.4. Description of the artificial variables of interest  
Variable Mean Percent Coefficient of 

variation 

Pearson 
Correlation with 

variables y1 

Pearson 
Correlation with 

variables x 
xVxy 5.1)(;35.01 =+= εε * 20.27 111.00 1.00 0.85 
xVxy 5.1)(;25.02 =+= εε  14.46 122.96 0.99 0.75 
xVxy 5.1)(;15.03 =+= εε  8.65 167.83 0.52 0.60 
( ) 2/3

4 5.1)(;35.0 xVxy =+= εε  20.13 204.34 0.42 0.49 

( ) 3/1
5 5.1)(;35.0 xVxy =+= εε  20.33 101.57 0.85 0.99 

5.1)(;35.06 =+= εε Vxy  20.34 100.81 0.85 1.00 

17 5.1)(;35.0 yVxy =+= εε  20.37 105.65 0.81 0.95 

28 5.1)(;35.0 yVxy =+= εε  20.38 104.32 0.82 0.96 

39 5.1)(;35.0 yVxy =+= εε  21.56 101.16 0.82 0.96 

1110 5.1)(;35.0 yVyy =+= εε  7.12 146.83 0.75 0.64 

2211 5.1)(;35.0 yVyy =+= εε  5.08 169.85 0.71 0.54 

3312 5.1)(;35.0 yVyy =+= εε  4.23 254.83 0.29 0.32 
x ∼ );30( 5

2
3
1 uuN +  58.15 100.47 0.85 1.00 

* )(εV  denotes the model variance 

 
The mean percent CV values are reported in table 6.1.5, 6.1.6 and 6.1.7 referred respectively to the 
domains of partition 1, 2 and to the overall set of domains. 
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Table 6.1.5. Mean percent CV by sampling design and variable of partition 1 domains 
Variable BAL OPT1 OPT2 STDOM1 STDOM2 SRS PPS 

y1 13,6 16,6 18,7 17,7 21,1 21,5 18,3 
y2 19,1 23,3 26,0 24,7 29,4 30,0 25,6 
y3 65,7 39,5 44,5 42,0 50,8 51,7 43,7 
y4 84,1 17,2 19,4 18,2 22,2 22,6 19,0 
y5 7,0 16,8 18,9 17,8 21,4 21,8 18,5 
y6 3,6 16,8 18,9 17,8 21,4 21,8 18,5 
y7 16,6 16,7 18,8 17,8 21,4 21,8 18,5 
y8 14,1 16,7 18,8 17,8 21,4 21,8 18,5 
y9 14,7 15,9 17,8 16,8 20,3 20,7 17,5 
y10 49,4 47,4 53,1 50,3 60,2 61,3 52,1 
y11 59,4 65,9 73,8 70,1 83,6 85,1 72,5 
y12 121,1 82,0 92,6 87,0 106,3 108,2 91,0 

 
Table 6.1.6. Mean percent CV by sampling design and variable of partition 2 domains 

Variable BAL OPT1 OPT2 STDOM1 STDOM2 SRS PPS 
y1 20,0 28,4 24,0 35,4 25,3 33,0 26,6 
y2 28,2 40,3 34,0 50,4 35,8 46,9 37,7 
y3 90,7 66,8 56,5 83,5 59,4 78,1 62,6 
y4 123,9 29,4 24,7 37,0 26,0 34,6 27,5 
y5 9,3 27,8 23,6 34,3 24,8 32,1 26,0 
y6 4,9 27,7 23,6 34,3 24,8 32,1 26,0 
y7 22,6 27,9 23,7 34,5 24,9 32,3 26,1 
y8 19,2 27,9 23,7 34,5 24,9 32,3 26,1 
y9 20,4 26,6 22,5 33,0 23,7 30,8 24,9 
y10 72,1 83,2 70,0 104,8 73,6 97,6 77,9 
y11 88,6 119,4 99,9 151,3 105,2 140,8 111,6 
y12 178,7 154,6 128,3 198,6 135,0 185,3 144,9 

 
 
Table 6.1.7. Mean percent CV by sampling design and variable of the overall set of domains 

Variable BAL OPT1 OPT2 STDOM1 STDOM2 SRS PPS 
y1 16,8 22,5 21,4 26,5 23,2 27,3 22,5 
y2 23,6 31,8 30,0 37,5 32,6 38,4 31,6 
y3 78,2 53,2 50,5 62,7 55,1 64,9 53,2 
y4 104,0 23,3 22,0 27,6 24,1 28,6 23,3 
y5 8,2 22,3 21,2 26,1 23,1 27,0 22,3 
y6 4,2 22,3 21,2 26,0 23,1 26,9 22,3 
y7 19,6 22,3 21,3 26,2 23,2 27,1 22,3 
y8 16,6 22,3 21,2 26,1 23,1 27,0 22,3 
y9 17,6 21,2 20,2 24,9 22,0 25,8 21,2 
y10 60,8 65,3 61,5 77,6 66,9 79,5 65,0 
y11 74,0 92,7 86,8 110,7 94,4 113,0 92,0 
y12 149,9 118,3 110,5 142,8 120,6 146,7 118,0 

 
Examining the three tables we underline that the BAL strategy performs poorly for the variables 3, 
4, 12 with respect to the other designs. In particular the BAL approach seems to be strongly 
influenced by the high variability of the variables of interest not considered in the sample design 
phase, while the other strategies seem to be less influenced by this problem. These findings point 
out that (i) the variables of interest with high variability must be included in the design phase; and 
(ii) the proposed strategy must be adopted after a careful analysis of the hetheroschedastic factors of 
the variables of interest. 
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6.2. Real business data 
 
The experiment examines a situation characterizing many real survey contexts in which the overall 
sample size n is fixed and the marginal sample sizes bdn  are determined by a quite simple rule 
which turns out to be a compromise between the Allocation Proportional to Population size (APP) 
and the allocation uniform for each domain of a given partition: 
 

bbbdbbd MnNNnn /)1()/( αα −+=               (6.2.1) 
 
being bα  ( 10 ≤≤ bα ) a fixed constant. 
The analysis has been carried out on the 1999 population of the enterprises from 1 to 99 employers 
belonging to the Computer and related economic activities (2-digits of the NACE rev.1 
classification). In order to simplify the empirical analysis, some units with outlier values have been 
deleted. At the end of the cleaning procedure, the data base used for the simulation study has 
N=10,392 enterprises. The value added and labour cost are the variables of interest chosen in the 
simulation. The variable values are available for each unit in the population by an administrative 
data source. According to the EU Council Regulation n°58/97 on Structural Business Statistics the 
estimation domains are defined as different partition subsets of the population. In particular, we 
consider two partitions: (DOM1) geographical region with 20 marginal domains; (DOM2) 
Economic activity group (3-digits of the NACE rev.1 classification with 6 different groups) by Size 
class (defined in terms of number of persons employed: 1=1-4; 2=5-9; 3=10-19; 4=20-99) with 24 
marginal domains. Therefore, the overall number of marginal domains is 44, while the number of 
the cross-classification strata is 480 but only 360 strata have one or more population units.  
In this study n is set equal to to 360. In order to determine the values of the parameters 1α  and 2α  
of the expression (6.2.1), two simple one-way stratification designs have been taken into account: a 
sampling design stratified by Partition 1 with SRSWOR in each stratum (STDOM1) and a sampling 
design stratified by Partition 2 with SRSWOR in each stratum (STDOM2). The parameter 1α  and 
the related marginal sample sizes dn1  (d=1,…,20) guarantee that with the STDOM1 sample design 
the percent CV of the Horvitz-Thompson (HT) estimates of totals of the auxiliary variable number 
of employers be lower than than 34.5% for all domain of the partition 1; the 2α  value assures that 
with the STDOM2 sample design the percent CV of the HT estimates of totals of the auxiliary 
variable be lower than than 8.7% for all domain of the partition 2. We note that the above allocation 
rules are straightforward to implement in any real survey contexts. In the following we refer to the 
domains with the planned sample size greater than the APP sample size as oversized domains. 
These domains need to have a sample size larger than the APP sample size to bound the sampling 
errors; roughly speaking these domains may be classified as small domains. In the following the 
analysis is based on the set of small domains. 
Given the marginal sample sizes, five sampling designs have been considered in the experiment, as 
reported in table 6.2.1.  
 
Table 6.2.1. Sampling Design used in the simulation study 

Sampling Design Abbreviation 
Stratified by Partition 1 with SRSWOR* in each stratum STDOM1 
Stratified by Partition 2 with SRSWOR* in each stratum STDOM2 
Balanced sampling on the marginal sample sizes and on population sizes  BALPOP 
Balanced sampling on the marginal sample sizes  BAL 
Coordinated Pareto sampling  CPAR 

*SRSWOR: Simple Random Sampling Without Replacement 
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The inclusion probabilities of STDOM1 and STDOM2 are those described in the table 6.1.2. Two 
balanced sample designs are examined: the BAL design consider the balancing equations (2.2.2) 
with the specification (2.3.2) of the kz vector;  the BALPOP samples satisfy (or approximately 

satisfy) the following balancing equations bdsk kkbdk n
bd

=∑ ∈ πδπ  and bdsk kkbd N
bd

=∑ ∈ πδ  

),...,1;,...,1( bMdBb == . The probabilities kπ  of both designs have been obtained as solution of 
the calibration problem (3.2.1) where the marginal sample sizes are computed by equation (6.2.1) 
and the initial probabilities kπ′  are set uniformly equal to Nnk /=′π . These probabilities are no 
more optimal in the sense described in section 3; however they have been computed with a 
reasonable procedure, which may be fairly implemented and thus representing an interesting point 
of reference with respect to any real survey context. The coordinated design CPAR selects a single 
sample for each marginal population with Pareto Sampling (Särndal and Lundström, 2005), 
assuring the maximum overlap of the two samples; the marginal sample sizes (6.2.1) are satisfied 
only as expectation over repeated sampling; the inclusion probabilities are computed with the 
iterative procedure described in Falorsi et al. (2006). 
Five hundred Monte Carlo samples have been selected for each sampling design.  
For each sample, the estimates of the domain totals have been computed by the Horvitz-Thompson 
estimator (HT), modified greg estimator (greg) and synthetic estimator (syn), expressed as 

∑ ∈=
bdUk krsynrbd yt ,,

~ˆ . As far as the estimators using auxiliary information are concerned, two 

simple homoschedastic linear models have been implemented: the model (6.2.2) uses 10 auxiliary 
variables, six of them are the economic activity group membership indicators, and the remaining 
four are the size class membership indicators; the model (6.2.3) uses the 44 domain membership 
indicator variables. The linear model (6.2.2) is expressed by 
 
 jhkm yE ββ +=)(    for jh UUk ∩∈  ,            (6.2.2) 

where hU  is the population of enterprises of h-th (h=1, …, 6) economic activity group and jU  is 
the population of enterprises of j-th (j=1, …, 4) size class of the number of employers and hβ  and 

jβ are the fixed effects of the h-th economic activity group and of the j-th size class. 
The linear model (6.2.3) is 
 

 ddkm yE 21)( ββ +=   for dd UUk 21 ∩∈ ,            (6.2.3) 
 
where d1β  and d2β are the separate domain-specific effects.  
We point out that the main aim of the experiment is to compare different sampling designs using the 
same estimator. In this context, the choice of the best model does not represent a central issue; 
hence, we have considered two quite general feasible models that can be implemented in all 
situations of planned domains. The model (6.2.2) is somewhat more reliable, since the estimates of 
the regression parameters are based on large sample sizes; while in model (6.2.3) it is possible to 
evaluate the effect of planning the domain sample sizes, although the estimates of each regression 
parameter are based on small sample sizes. Obviously, more flexible model formulations could be 
possible as described for instance in Lehtonen et al. (2005).  
Using the model (6.2.3) the synthetic and the modified greg estimators give identical results. In the 
following each sampling strategy is indicated in short by the couple (dis, est), where dis indicates 
one of the 5 sample designs referred in table 2 and est assumes the categories HT, syn, and greg 
above indicated. 
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Two quality measures have been computed: the average Absolute mean Relative Bias )ARB(  and 
the average Relative Mean Square Error )RMSE(  expressed by 
 

 [ ] 100)(ˆ
500
1

)(
1),(

500

1
, ×−= ∑ ∑

∈ =Fbd
rbd

i
rbd

i
estrbdF ttdist

Fcard
estdisARB , 

  

 [ ] 100)(ˆ
500
1

)(
1),(

500

1

2
, ×









−= ∑ ∑
∈ =Fbd

rbd
i

rbd
i

estrbdF ttdist
Fcard

estdisRMSE  

 
denoting with: F a specific subset of the marginal domains; card(F) the cardinality of F; 

)(ˆ , dist i
estrbd  the i-th Monte Carlo sample estimate (i=1,…, 500) of the total rbd t  in the strategy 

(dis, est). In particular, F represents alternatively the subset of small domains of DOM1, DOM2 or 
the overall set of small domains (of both DOM1 and DOM2). 
The Monte Carlo simulation study highlights that the multi-way stratification techniques proposed 
in this paper are able to take bias and variability under control with respect to two benchmark 
strategies (STDOM1 and STDOM2) collapsing one of the two stratification variables. 
The main results of the experiment referred to the small domains set are shown in table 6.2.2. The 
table is organised in four blocks: the first one illustrates the quality measures of the HT estimator; 
the second and third block are dedicated respectively to the syn and greg estimators based on 10 
auxiliary variables (model (6.2.2)); the forth block presents the results of syn or greg estimators 
based on the 44 domain membership indicator variables (model (6.2.3)). We restrict the comments 
only on the value added variable, but similar consideration could be expressed for the labour cost 
variable. In general, the comments are referred to the overall set of small domains.  
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Table 6.2.2. Average Absolute Relative Bias (ARB) and Relative Mean Square Error (RMSE) 
of small domain sampling strategies 

Value Added Labour Cost 

DOM1 DOM2 Overall DOM1 DOM2 Overall 
Sampling 

Design 

  
ARB RMSE ARB RMSE ARB RMSE ARB RMSE ARB RMSE ARB RMSE 

  Horvitz-Thompson estimator (block 1) 

STDOM1 1.79 43.19 8.18 148.28 5.41 102.74 1.72 42.82 6.86 155.87 4.63 106.88 

STDOM2 3.42 107.49 0.47 15.26 1.75 55.23 3.32 105.66 0.46 12.66 1.70 52.96 

BALPOP 0.77 24.86 1.29 38.49 1.06 32.58 0.74 23.60 1.20 34.26 1.00 29.64 

BAL 0.84 25.43 1.45 40.61 1.19 34.03 0.79 24.22 1.57 35.80 1.23 30.78 

CPAR 1.35 32.52 2.18 53.85 2.18 44.60 1.44 31.68 2.62 51.44 2.11 42.88 

 Synthetic estimator with 10 auxiliary variables (block 2) 

STDOM1 14.22 18.88 13.81 100.55 13.99 65.16 12.29 18.40 9.25 95.03 10.57 61.83 

STDOM2 24.82 33.96 14.48 15.96 20.34 26.16 13.13 14.79 12.46 23.11 12.75 19.51 

BALPOP 13.68 17.51 24.98 43.98 20.09 32.51 11.89 15.60 12.35 33.08 12.15 25.50 

BAL 14.92 18.46 21.82 41.66 18.83 31.61 13.37 16.91 10.41 32.64 11.69 25.82 

CPAR 13.68 17.83 23.45 44.63 19.22 33.02 11.82 16.13 11.69 34.93 11.75 26.78 

 Modified greg estimator with 10 auxiliary variables (block 3) 

STDOM1 2.35 30.13 11.26 119.95 7.40 81.03 1.86 29.28 11.79 119.23 7.49 80.25 

STDOM2 3.98 58.62 0.95 15.26 2.26 34.05 2.90 52.66 0.93 12.66 1.78 29.99 

BALPOP 1.11 19.41 2.20 25.80 1.73 23.03 1.01 16.42 1.99 21.73 1.57 19.43 

BAL 1.63 19.41 1.76 26.11 1.70 23.21 1.21 16.72 2.08 21.96 1.70 19.69 

CPAR 1.04 21.27 1.63 29.30 1.37 25.82 1.03 18.27 1.11 24.60 1.08 21.86 

 Synthetic or Modified greg estimator with 44 auxiliary variables (block 4) 

STDOM1 3.39 31.30 27.48 63.22 17.04 49.39 2.76 30.80 28.67 63.05 17.44 49.08 

STDOM2 17.24 102.24 1.37 20.65 8.25 56.00 23.00 102.64 1.42 19.10 10.77 55.30 

BALPOP 1.07 20.71 1.97 26.98 1.58 24.26 1.08 17.62 1.93 24.07 1.56 21.27 

BAL 1.47 20.36 2.13 28.46 1.84 24.95 1.41 17.66 2.02 25.10 1.75 21.88 

CPAR 1.79 23.38 2.22 32.39 2.03 28.48 1.65 20.73 2.08 30.39 1.90 26.21 

 
Examining firstly the HT estimator, we observe the following. 
- The two benchmark designs (STDOM1 and STDOM2) have an RMSE  value for the unplanned 

domains equal to 148.28% and 107.49% respectively. These values cause the large RMSE  
values computed for the overall set of small domains and respectively equal to 102.74% and 
55.23%. 

- The STDOM2 shows better results than those attained by STDOM1. This finding is explained 
by the fact that the STDOM2 stratification criterion is correlated with the variables of interest 
and takes under control a larger number of small domain than the  STDOM1 stratification. 

- As far as the overall set of small domains, the BALPOP is the more efficient design, both in 
terms of ARB (1.06%) and RMSE  (32.58%), even if BAL is only slightly worse.  

- The strategy adopting the coordinated sampling shows worse values with respect to balanced 
sampling but it performs better in terms of RMSE  than benchmark strategies.  

Considering the synthetic estimator based on 10 auxiliary variables, some issues may be pointed 
out. 
- All designs are characterized by a large bias. The STDOM1 has an ARB equal to 13.99% 

(although it has an unacceptable RMSE  that is equal to 65,16%). The rest of the designs have 
the ARB values higher than 18%. This evidence gives a warning against the use of synthetic 
estimator.  

- The STDOM2 design has the lowest RMSE  (26,16%), because of a strong reduction of the 
DOM1 variance. However, the ARB value (20.34%) is the largest than all designs. 
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- The behaviour of balanced and coordinated designs in terms of  bias and variance are more or 
less equal. The BAL has the lowest ARB (18.33%) and RMSE  (31.61%) values. 

The experimental results of the modified greg estimator in third block of the table 3 suggest some 
considerations. 
- All the designs show strong improvements of the quality measures. In general, the ARB 

measure has a remarkable reduction with respect to the same indicator computed on the 
synthetic estimator. Only the STDOM1 still presents a high ARB value (7.40%). 

- In the STDOM2, the reduction of the bias is more than compensated from the increase of the 
variability. This produces an RMSE  equal to 34.05%. 

- Both the balanced and the coordinated designs have good performances, though the balanced 
designs are slightly better being the RMSE  roughly equal to the 23%.  

Finally in the fourth block we note that the syn or greg estimator based on 44 auxiliary variables 
show analogous results to those of the greg estimator based on 10 auxiliary variables. The balanced 
designs are the best with slight preference for the BALPOP sampling.  

As general findings, the balanced designs seem to guarantee a good strategy to take under control 
bias and variance of the overall set of the small domains.  
The conclusion is that for all blocks, BALPOP generally shows the best overall performance with 
respect to bias and accuracy. The strategy based on the BALPOP sample design coupled with the 
greg estimator with the ten auxiliary variables (block 3) is a safe choice for both value added and 
labour cost. The BAL design performs well too. Moreover, the results show that the synthetic 
estimator of block 2 must be considered carefully because the bias can be unexpectedly large and 
the squared bias would be the dominating part of the RMSE . 
 
 
7. Conclusions  
 
This work illustrates an efficient sampling strategy useful for obtaining planned sample size for 
domains belonging to different partitions of the population and in order to guarantee that sampling 
errors of domain estimates are lower than given thresholds. The sampling strategy, that covers the 
multivariate-multidomain case, is useful when the overall sample size is bounded. In these 
instances, the standard solution of using a stratified sample with the strata given by the 
cross-classification of variables defining the different partitions, is not feasible since the number of 
strata is larger than the overall sample size.  
The sampling strategy which is proposed is based on the use of the balanced sampling selection 
technique and on a greg-type estimator. The proposal may be easily extended to a strategy 
employing the use of both direct and an indirect small area estimators. 
The empirical analysis, implemented both on artificial and on real enterprise data has generally 
showed a good performance of the strategy which is proposed in this paper. 
Computational feasibility is one of the main advantages of the solution which is proposed, since it 
allows to easily implement an overall small area strategy which jointly considers the design and the 
estimation phase, and allows to improve the efficiency of the direct domain estimators.  
The results of the proposed strategy are robust even when departing from ideal conditions, i.e. the 
estimates appear to be of high quality even when the inclusion probabilities of the sample are 
different from the optimal ones. Furthermore, the robustness of the approach is confirmed by using 
different working superpopulation model in the estimation phase thus pointing out the adaptability 
of the approach to the complex survey contexts. 
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Appendix 1 
 
In the special case of a single partition (b=B=1 and QMb = ), under the following three conditions 
 
(i) 1)/( ≅−QNN , (ii), bdbdk Ukcc ∈∀≈ , and (iii) bdbdbdbdk UkfNn ∈∀=≈ ,/π  (A.1.1) 
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In order to demonstrate (A.1.2), rank the N units by the order of domain. The matrices 
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Then, if the unit k belongs to domain d , it is    
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Under the above results, it is trivial to note that, under conditions (i) of (A.1.1), the inequality 
(A.1.2) is realized  if  k

Uj
jkjkkk ccggc

d

<+− ∑
∈

2)21( . 

Under the condition (ii) of (A.1.1), the above is 1)21( 2 <+− ∑
∈ dUj

kjkk gg .  By substituting 



 29

0
)1(

)1(
)1(

)1(2

2

<



















−
−

+
−

−−
∑∑∑

∈
∈

∈ bd
bd

bd Uj
jj

jk

Uj
Uj

jj

kk
ππ

ππ
ππ

ππ
⇒

[ ]
0

)1(

)1(

)1(2

2

<
−

−

+−−
∑

∑

∈

∈

bd

bd

Uj
jj

Uj
jk

kk ππ

ππ
ππ .   (A.1.3) 

 
Under the hypothesis  (iii) of (A.1.1), the (A.1.3) turns out to be  
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The above shows that the selection of balanced sample reduces the anticipated variance.  
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